单项选择(1987年全国统考

极坐标方程ρ=sinθ+2cosθ所表示的曲线是【 】

A、直线

B、圆

C、双曲线

D、抛物线

答案解析

B

讨论

在直角坐标系 xOy 中, 曲线 C 的参数方程为 (t 为参数且 t ≠ 1), C 与坐标轴交于 A, B 两点.(1) 求 |AB|;(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 求直线 AB 的极坐标方程.

已知曲线 C : mx2 + ny2 = 1. 【 】

极坐标方程ρ2cos2θ=1所表示的曲线是【 】

在直角坐标系xOy中,曲线C的方程为(t为参数).以坐标原点为极点,x轴正半轴为极轴建立坐标系,已知直线l的极坐标方程为ρsin⁡(θ+π/3)+m=0.(1) 写出l的直角坐标方程;(2) 若l与C有公共点,求m的取值范围.

已知直线的极坐标方程为ρsin⁡(θ+π/4)=/2,则极点到该直线的距离是______.

极坐标方程ρcosθ=4/3表示【 】

某电厂冷却塔的外形是如图所示双曲线的一部分绕其中轴(即双曲线的虛轴)旋转所成的曲面,其中A,A'是双曲线的顶点,C,C是冷却塔上口直径的两个端点,B,B'是下底直径的两个端点,已知AA'=14 m, CC'=18 m,BB'=22 m,塔高20 m.(Ⅰ)建立坐标系并写出该双曲线方程;(Ⅱ)求冷却塔的容积(精确到10m3 ,塔壁厚度不计,π取3.14).

在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程ρ=2cosθ.(1)将C的极坐标方程化为直角坐标方程;(2)设点A的直角坐标为(1,0),M为C上的动点,点P满足=,写出P的轨迹C1的参数方程,并判断C与C1是否有公共点.

试论下列函数并绘其图形ρ = 2(1 - cosθ)

如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A,B为端点的曲线段C上的任意一点到l2的距离与点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|NB|=6,建立适当的坐标系,求曲线段C的方程.