单项选择(1986年全国统考

给出20个数

87 91 94 88 93 91 89 87 92 86

90 92 88 90 91 86 89 92 95 88

它们的和是【 】

A、1789

B、1799

C、1879

D、1899

答案解析

B

讨论

在一组样本数据中, 1, 2, 3, 4 出现的频率分别为 p1, p2, p3, p4, 且=1, 则下面四种情形中, 对应样本的标准差最大的一组是【 】

已知一组数据 4, 2a, 3 − a, 5, 6 的平均数为 4, 则 a 的值是______.

现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字 最小值为ξ,则 P(ξ=2)=__________,E(ξ)= _________.

有一组样本数据x1,x2,⋯,x6,其中x1是最小值,x6是最大值,则【 】

随机变量ξ的概率分布律由下表给出: 该随机变量ξ的均值是______.

跳水比赛中,裁判给某选手的一个动作打分,其平均值为 8.6,方差为 1.1,若去掉一个最高分9.7 和一个最低分 7.3,则剩余得分的【 】

为了推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值为x ̅=2.1,样本方差为x²=0.01.已知该种植区以往的亩收入X服从正态分布 N(1.8,0.1²),假设推动出口后的亩收Y服从正态分布N(Y ̅,S²),则【 】(若随机变量Z服从正态分布N(μ,σ²),则P(Z<μ+σ)≈0.8413)

设一组样本数据 x1, x2, · · · , xn 的方差为 0.01, 则数据 10x1, 10x2, · · · , 10xn 的方差为【 】

袋中有4个红球m个黄球,n个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为1/6,一红一黄的概率为1/3,则m-n=_________,E(ξ)=________.

甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.

某校一个课外学习小组为研究某作物种子的发芽率 y 和温度 x (单位: °C) 的关系, 在 20 个不同的温度条件下进行种子发芽实验, 由实验数据 (xi, yi) (i = 1, 2, · · · , 20) 得到下面的散点图:由此散点图, 在 10°C 至 40°C 之间, 下面四个回归方程类型中最适宜作为发芽率 y 和温度 x 的回归方程类型的是【 】。

某厂接受了一项加工业务, 加工出来的产品 (单位: 件) 按标准分为 A, B, C, D 四个等级. 加工业务约定: 对于A 级品、 B 级品、 C 级品, 厂家每件分别收取加工费 90 元, 50 元, 20 元; 对于 D 级品, 厂家每件要赔偿原料损失费 50 元. 该厂有甲、乙两个分厂可承接加工业务. 甲分厂加工成本费为 25 元/件, 乙分厂加工成本费为 20 元/件.厂家为决定由哪个分厂承接加工业务, 在两个分厂各试加工了 100 件这种产品, 并统计了这些产品的等级, 整理如下:(1) 分别估计甲、乙两分厂加工出来的一件产品为 A 级品的概率;(2) 分别求甲、乙两分厂加工出来的 100 件产品的平均利润, 以平均利润为依据, 厂家应选哪个分厂承接加工业务?

某学生兴趣小组随机调查了某市 100 天中每天的空气质量等级和当天到公园锻炼的人次, 整理数据得到下表 (单位: 天):(1) 分别估计该市一天的空气质量等级为 1, 2, 3, 4 的概率;(2) 求一天中到该公园锻炼的平均人次的估计值 (同一组中的数据用改组区间的中点值为代表);(3) 若某天的空气质量等级为 1 或 2, 则称这天“空气质量好” ; 若某天的空气质量等级为 3 或 4, 则称这天“空气质量不好” . 根据所给数据, 完成下列的 2 × 2 列联表, 并根据列联表, 判断是否有 95% 的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?

为加强环境保护, 治理空气污染, 环境监测部门对某市空气质量进行调研, 随机抽查了 100 天空气中的 PM2.5和SO2 浓度 (单位: ug/m3), 得下表:(1) 估计事件“该市一天空气中 PM2.5 浓度不超过 75, 且SO2 浓度不超过 150”的概率;(2) 根据所给数据, 完成下面的 2 × 2 列联表:(3) 根据 (2) 中的列联表, 判断是否有 99% 的把握认为该市一天空气中 PM2.5 浓度与SO2 浓度有关?附:

从一批零件中抽取 80 个, 测量其直径 (单位: mm), 将所得数据分为 9 组: [5.31, 5.33], [5.33, 5.35], · · · ,[5.45, 5.47], [5.47, 5.49], 并整理得到如下频率分布直方图, 则在被抽取的零件中, 直径落在区间 [5.43, 5.47] 内的个数为【 】

某沙漠地区经过治理, 生态系统得到很大改善, 野生动物数量有所增加, 为调查该地区某种野生动物的数量,将其分成面积相近的 200 个地块, 从这些地块中用简单随机抽样的方法抽取 20 个作为样区, 调查得到样本数据(xi,yi) (i=1,2,…,20), 其中 xi 和 yi 分别表示第 i 个样区的植物覆盖面积 (单位: 公顷) 和这种野生动物的数量,并计算得=60, =1200, =80, =9000, = 800.(1) 求该地区这种野生动物数量的估计值 (这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数) ;(2) 求样本 (xi, yi) (i = 1, 2, … , 20) 的相关系数 (精确到 0.01) ;(3) 根据现有统计资料, 各地块间植物覆盖面积差异很大, 为提高样本的代表性以获得该地区这种野生动物数量更准确的估计, 请给出一种你认为更合理的抽样方法, 并说明理由.附: 相关系数 r = , ≈ 1.414.

为满足人民对美好生活的向往, 环保部门要求相关企业加强污水治理, 排放未达标的企业要限期整改. 设企业的污水排放量 W 与时间 t 的关系为 W = f(t). 用 -(f(b)-f(a))/(b-a)的大小评价在 [a, b] 这段时间内企业污水治理能力的强弱. 已知整改期内, 甲、乙两企业的污水排放量与时间的关系如下图所示.① 在 [t1, t2] 这段时间内, 甲企业的污水治理能力比乙企业强;② 在 t2 时刻, 甲企业的污水治理能力比乙企业强;③ 在 t3 时刻, 甲、乙两企业的污水排放都已达标;④ 甲企业在 [0, t1], [t1, t2], [t2, t3] 这三段时间中, 在 [0, t1] 的污水治理能力最强.其中所有正确结论的序号是__________.

盒中有 4 个球, 其中 1 个红球, 1 个绿球, 2 个黄球, 从盒中随机取球, 每次取 1 个, 不放回, 直到取出红球为止, 设此过程中取到黄球的个数为 ξ, 则 P (ξ = 0) = ______, E(ξ) = ______.

从某网络平台推荐的影视作品中抽取400部,统计其平分数据,将所得400个评分数据分为8组:[60,70],[70,74],…,[94,98],并整理得到如下的频率分布直方图,则评分在区间[82.86)内的影视作品数量为【 】

一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据: 不够良好 良好病例组 40 60对照组 10 90(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.(P(B|A))/(P(B ̄|A))与(P(B|A ̄))/(P(B ̄|A ̄))的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.(ⅰ)证明:R=P(A|B)/P(A ̄|B)⋅P(A ̄|B ̄)/P(A|B ̄);(ⅱ)利用该调查数据,给出P(A|B),P(A|B ̄)的估计值,并利用(ⅰ)的结果给出R的估计值.附:K2=n(ad-bc)2/((a+b)(c+d)(a+c)(b+d)),P(K2≥k) 0.050 0.010 0.001k 3.841 6.635 10.828