问答题(2020年新高考Ⅱ·理2020年新高考Ⅱ·文

某沙漠地区经过治理, 生态系统得到很大改善, 野生动物数量有所增加, 为调查该地区某种野生动物的数量,

将其分成面积相近的 200 个地块, 从这些地块中用简单随机抽样的方法抽取 20 个作为样区, 调查得到样本数据(xi,yi) (i=1,2,…,20), 其中 xi 和 yi 分别表示第 i 个样区的植物覆盖面积 (单位: 公顷) 和这种野生动物的数量,并计算得=60, =1200, =80, =9000, = 800.

(1) 求该地区这种野生动物数量的估计值 (这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数) ;

(2) 求样本 (xi, yi) (i = 1, 2, … , 20) 的相关系数 (精确到 0.01) ;

(3) 根据现有统计资料, 各地块间植物覆盖面积差异很大, 为提高样本的代表性以获得该地区这种野生动物数量更准确的估计, 请给出一种你认为更合理的抽样方法, 并说明理由.

附: 相关系数 r = , ≈ 1.414.

答案解析

(1) 由己知得样本平均数 = 1/20 =60, 从而该地区这种野生动物数量的估计值为 60×200 = 12000.(2) 样本 (xi, yi) (i = 1, 2, … , 20) 的相关系数r= = = (2)/3 ≈ 0.94.(3) 分层抽样: 根据植物覆盖面积的大小对地块分层, 再对 200...

查看完整答案

讨论

△ABC 中, sin2A − sin2B − sin2C = sinBsinC.(1) 求 A;(2) 若 BC = 3, 求 △ABC 周长的最大值.

设有下列四个命题:p1 : 两两相交且不过同一点的三条直线必在同一平面内.p2 : 过空间中任意三点有且仅有一个平面.p3 : 若空间两条直线不相交, 则这两条直线平行.p4 : 若直线 l ⊂ 平面 α, 直线 m ⊥ 平面 α, 则 m ⊥ l.则下列命题中所有真命题的序号是__________.① p1 ∧ p4 ② p1 ∧ p2 ③ ¬p2 ∨ p3 ④ ¬p3 ∨ ¬p4

设复数 z1, z2 满足 |z1| = |z2| = 2, z1 + z2 = + i , 则 |z1 − z2| =______.

4 名同学到 3 个小区参加垃圾分类宣传活动, 每名同学只去 1 个小区, 每个小区至少安排 1 名学生, 则不同的安排方法有______种

己知单位向量 a, b 的夹角为 45°, ka − b 与 a 垂直, 则 k = ______.

0−1 周期序列在通信技术中有着重要应用. 序列 a1a2 · · · an · · · 满足 a1 ∈ {0, 1} (i = 1, 2, · · · ), 且存在正整 数 m, 使得 ai+m = ai (i = 1, 2, · · · ) 成立, 则称其为 0−1 周期数列, 并称满足 ai+m = ai (i = 1, 2, · · · ) 的最小正整数 m 为这个序列的周期. 对于周期为 m 的 0−1 序列 a1a2 · · · an · · · , C(k) =(k = 1, 2, · · · , m−1)是描述其性质的重要指标. 下列周期为 5 的 0 − 1 序列中, 满足 C(k) ⩽ 1/5(k = 1, 2, 3, 4) 的序列是【 】

若 2x − 2y < 3−x − 3−y, 则【 】

已知 △ABC 是面积为(9)/4 的等边三角形, 且其顶点都在球 O 的球面上, 若球 O 的表面积为 16π, 则 O到平面 ABC 的距离为【 】

设函数 f(x) = ln|2x + 1| − ln|2x − 1|, 则 f(x)【 】

设O为坐标原点, 直线x = a与双曲线 C : x2/a2 - y2/b2 =1(a > 0, b > 0) 的两条渐近线分别交于 D, E 两点. 若△ODE的面积为8, 则 C 的焦距的最小值为【 】

执行如图的程序框图, 若输入 k = 0, a = 0, 则输出的 k 为【 】

如图,四边形ABCD为正方形, ED⊥平面ABCD,FB//ED,AB=ED=2FB,记三棱锥E-ACD,F-ABC,F-ACE的体积分别为V1,V2,V3,则【 】

已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)= ____________.

写出曲线y=ln⁡|x|过坐标原点的切线方程:____________,____________.

在某地区进行流行病调查,随机调查了100名某种疾病患者的年龄,得到如下的样本数据频率分布直方图.(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值作代表);(2)估计该地区一人患这种疾病年龄在区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%,从该地区任选一人,若此人年龄位于区间[40,50),求此人患该种疾病的概率.(样本数据中的患者年龄位于各区间的频率作为患者年龄位于该区间的概率,精确到0.0001).

如图,PO是三棱锥P-ABC的高,PA=PB,AB⊥AC,E是PB的中点.(1)求证:OE//平面PAC;(2)若∠ABO=∠CBO=30°,PO=3,PA=5,求二面角C-AE-B的正弦值.

在复平面内,(1+3i)(3-i)对应的点位于【 】

某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有【 】种.

已知函数f(x)=aex-lnx在区间(1,2)上单调递增,则a的最小值为【 】

记Sn为等比数列{an}的前n项和,若S4=-5,S6=21S2,则S8=【 】

某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m2)和材积量(单位:m3),得到如下数据:并计算得xi2 =0.038,yi2 =1.6158,xiyi=0.2474.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数r= ,≈1.377.

分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图: 则下列结论中错误的是【】

为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,下图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为【 】

跳水比赛中,裁判给某选手的一个动作打分,其平均值为 8.6,方差为 1.1,若去掉一个最高分9.7 和一个最低分 7.3,则剩余得分的【 】

为了推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值为x ̅=2.1,样本方差为x²=0.01.已知该种植区以往的亩收入X服从正态分布 N(1.8,0.1²),假设推动出口后的亩收Y服从正态分布N(Y ̅,S²),则【 】(若随机变量Z服从正态分布N(μ,σ²),则P(Z<μ+σ)≈0.8413)

某校一个课外学习小组为研究某作物种子的发芽率 y 和温度 x (单位: °C) 的关系, 在 20 个不同的温度条件下进行种子发芽实验, 由实验数据 (xi, yi) (i = 1, 2, · · · , 20) 得到下面的散点图:由此散点图, 在 10°C 至 40°C 之间, 下面四个回归方程类型中最适宜作为发芽率 y 和温度 x 的回归方程类型的是【 】。

某厂接受了一项加工业务, 加工出来的产品 (单位: 件) 按标准分为 A, B, C, D 四个等级. 加工业务约定: 对于A 级品、 B 级品、 C 级品, 厂家每件分别收取加工费 90 元, 50 元, 20 元; 对于 D 级品, 厂家每件要赔偿原料损失费 50 元. 该厂有甲、乙两个分厂可承接加工业务. 甲分厂加工成本费为 25 元/件, 乙分厂加工成本费为 20 元/件.厂家为决定由哪个分厂承接加工业务, 在两个分厂各试加工了 100 件这种产品, 并统计了这些产品的等级, 整理如下:(1) 分别估计甲、乙两分厂加工出来的一件产品为 A 级品的概率;(2) 分别求甲、乙两分厂加工出来的 100 件产品的平均利润, 以平均利润为依据, 厂家应选哪个分厂承接加工业务?

为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是【 】

甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:K2=,

从某网络平台推荐的影视作品中抽取400部,统计其平分数据,将所得400个评分数据分为8组:[60,70],[70,74],…,[94,98],并整理得到如下的频率分布直方图,则评分在区间[82.86)内的影视作品数量为【 】