求2+22+23+⋯+2n之和,并利用之以证
1+3×2+5×22+⋯+(2n-1)∙2n-1=3-2n+(n-1) 2n+1.
在 △ABC 内作 AE 及 BD,假设 ∠CAE < ∠CBD,∠BAE < ∠ABD,求证 AE> BD.
设 △ABC 的重心为 G,BC、CA 的中点为 E、F,设 △ABC 的面积为 K,求△GEF 的面积.
以(2,1)为焦点,直线3x-4y-5=0为准线,1/2为离心率的椭圆方程,求此椭圆主轴的长.
求自原点至圆x²+y²-14x+2y+25=0所作的二切线的交角.
设三角形的三角为α,β,γ,证sinα/2·sinβ/2·sinγ/2<1/4.
已知PA,PB,PC为过圆周上点P三弦,PT为圆之切线,设有一直线与PT平行,交PA,PB,PC于A',B',C'三点.求证:PA∙PA'=PB∙PB'=PC∙PC'.
设 {an} 是公比不为 1 的等比数列, a1 为 a2, a3 的等差中项.(1) 求 {an} 的公比;(2) 若 a1 = 1, 求数列 {nan} 的前 n 项和.
设 {an} 是等比数列, 且 a1 + a2 + a3 = 1, a2 + a3 + a4 = 2, 则 a6 + a7 + a8 =【 】
记 Sn 为等比数列 {an} 的前 n 项和. 若 a5 − a3 = 12, a6 − a4 = 24, 则 Sn/an=【 】
已知{an}是等比数列,如果a1+a2+a3=18,a2+a3+a4=-9,且Sn=a1+a2+⋯+an,那么Sn 的值等于【 】
是否存在常数a,b,c使得等式1∙22+2∙32+⋯+n∙(n+1)2=(an2+bn+c)对一切自然数n都成立?并证明你的结论.
已知{an}是公差不为零的等差数列,如果Sn是{an}的前n项和,那么(nan)/Sn )等于______.
有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12.求这四个数.
设{an}是首项为1的正项数列,且(n+1) - n+an+1an=0(n=1,2,3⋅⋅⋅),则它的通项公式是an=______.
设数列{an}的通项为an=2n-7(n∈N),则|a1|+|a2|+⋯+|a15|=______.
已知数列{an}满足a1=1,an+1=(1)记bn=a2n,写出b1,b2,并求数列{bn}的通项公式;(2)求{an}的前20项和.
数列{an}是递增的整数数列,且a1≥3,a1+a2+⋯+an=100,则n的最大值为【 】
已知ai∈N* (i=1,2,…,9)对任意的k∈N* (2≤k≤8),ak=ak-1+1或ak=ak+1-1中有且仅有一个成立,a1=6,a9=9,则a1+⋯+a9的最小值为__________.