单项选择(2001年全国新课程

函数y=3sin(x/2+π/3)的周期、振幅依次是【 】

A、4π、3

B、4π、-3

C、π、3

D、π、-3

答案解析

A

讨论

设f(x)是定义R上的偶函数,其图像关于直线x=1对称,对任意x_1,x_2∈[0,1/2],都有f(x1+x2 )=f(x1)f(x2),且f(1)=a>0.(Ⅰ)求f(1/2)及f(1/4);(Ⅱ)证明f(x)是周期函数;(Ⅲ)记an=f(2n+1/2n),求 (lnan).

从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投人将比上年减少1/5.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加1/4.( I )设n年内(本年度为第一年)总投人为an万元,旅游业总收人为bn万元.写出an,bn的表达式.(Ⅱ)至少经过几年旅游业的总收入才能超过总投入?

已知i,m,n是正整数,且1<i≤m<n.(Ⅰ)证明 niAim<miAin;(Ⅱ)证明 (1+m)n>(1+n)m.

设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线与A,B两点,点C在抛物线的准线上,且BC//x轴.证明AC经过原点O.

已知复数z1=i⁡(1-i)3.(Ⅰ)求argz1及|z1|;(Ⅱ)当复数z满足|z|=1,求|z - z1|的最大值.

如图,在底面是直角梯形的四棱锥S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=1/2. (I)求四棱锥S-ABCD的体积;(Ⅱ)求面SCD与面SBA所成二面角的正切值.

圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为__________.

设{an}是公比为q的等比数列,Sn是它的前n项和.若{Sn}是等差数列,则q=________.

双曲线x2/9 - y2/16=1的两个焦点为F1,F2,点P在双曲线上.若PF1⊥PF2,则点P到x轴的距离为________.

若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是________.

已知命题p:若α,β为第一象限角,且α>β,则tanα>tanβ.能说明p为假命题的一组α,β的值为α=______,β=______.

已知函数f(x)=sinωx+sin2x,其中ω∈N+,ω≤2023.若f(x)<2恒成立,则满足题设的常数ω的个数为________.

已知 α ∈ (0, π), 且 3cos2α − 8cosα = 5, 则 sinα =【 】

若 α 为第四象限角, 则【 】

已知函数 f(x) = sin2xsin2x.(1) 讨论 f(x) 在 (0,π)上的单调性;(2) 证明: |f(x)| ⩽ 3/8;(3) 证明: sin2xsin22xsin24x . . . sin22nx ⩽ 3n/4n .

已知 2tanθ − tan(θ + π/4) = 7, 则 tanθ =【 】

2020 年 3 月 14 日是全球首个国际圆周率日 (π Day). 历史上, 求圆周率的方法有多种, 与中国传统数学中 的“割圆术”相似, 数学家阿尔 • 卡西的方法是: 当正整数 n 充分大时, 计算单位圆的内接正 6n 边形的周长和外 切正 6n 边形 (各边均与圆相切的正 6n 边形) 的周长, 将它们的算术平均数作为 2π 的近似值. 按照阿尔 • 卡西的 方法, π 的近似值的表达式是【 】

已知函数 f(x)=sin⁡(x+π/3). 给出下列结论:① f(x) 的最小正周期为 2π;② f(π/2) 是 f(x) 的最大值;③ 把函数 y = sin x 的图像上所有点向左平移 π/3个单位长度, 可得到函数 y = f(x) 的图像.其中所有正确结论的序号是【 】.

已知 f(x) = sinωx, ω> 0.(1) T = 4π, 求ω及f(x)=1/2时的解集;(2) ω = 1, g(x)=[f(x)]2-f(-x)f(π/2-x), 求 x∈[0,π/4] 时 g(x) 的值域.

不查表,求 cos80°cos35°+ cos10°cos55°的值.