问答题(2020年新高考Ⅱ·理

已知椭圆 C1 : x2/a2  + y2/b2  = 1(a > b > 0) 的右焦点 F 与抛物线 C2 的焦点重合. C1 的中心与 C2 的顶点重合,

过 F 且与 x 轴垂直的直线交 C1 于 A, B 两点, 交 C2 于 C, D 两点. 且 |CD| = 4/3|AB|.

(1) 求 C1 的离心率;

(2) 设 M 是 C1 与 C2 的公共点. 若 |MF | = 5, 求 C1 与 C2 的标准方程.

答案解析

(1) 由已知可设 C2 的方程为 y2 = 4cx, 其中 c = .不妨设 A, C 在第一象限, 由题设得 A, B 的纵坐标分别为 b2/a, −b2/a; C, D 的纵坐标分别为 2c, −2c.故 |AB| = (2b2)/a , |CD| = 4c.由 |CD| = 4/3|AB| 得 4c = (8b2)/3a , 即 3 × c/a = 2 – 2(c/a)2, 解得 c/a = −2(舍去), c/a = 1/2.所以 C1 的离心率为 1/2.(2) 由 (1) 知 a = 2c, b = c, 故 C1 : x2/4...

查看完整答案

讨论

设双曲线x²/a² -y²/b² =1(a>0,b>0)的左右焦点分别为F1,F2,过F2作平等于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为______.

已知双曲线C的中心坐标为原点,左焦点为(-2√5,0),离心率为√5.(1)求C的方程;(2)记C的左、右顶点分别为A1,A2,过点(-4,0)的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P,证明:点P在定直线上.

设 F1, F2 是双曲线 C : x2 −y2/3 = 1 的两个焦点, O 为坐标原点, 点 P 在 C 上且 |OP| = 2, 则 △PF1F2 的 面积为【 】

已知双曲线C的实半轴长与虚半轴长的乘积为,C的两个焦点分别为F1,F2,直线l过F2且与直线F1 F2的夹角为φ,tanφ=/2,l与线段F1 F2的垂直平分线的交点是P,线段PF2与双曲线C的交点为Q,且|PQ|:|QF2 |=2:1.求双曲线C的方程.

双曲线3x2 - y2 = 3的渐近线方程是【 】

设双曲线x2/a2 - y2/b2 =1(0<a<b)的半焦距为c,直线l过(a,0),(0,b)两点.已知原点到直线l的距离为/4 c,则双曲线的离心率为【 】

已知两点M(1,5/4),N(-4,-5/4),给出下列曲线方程:①4x+2y-1=0 ②x2+y2=3③x2/2+y2=1 ④x2/2-y2=1在曲线上存在点P满足|MP|=|NP|的所有曲线方程是【 】

如图,已知梯形ABCD中|AB|=2|CD|,点E分有向线段AC 所成的比为λ,双曲线过C,D,E三点,且以A,B为焦点.当2/3≤λ≤3/4 时,求双曲线离心率e的取值范围.

下图中阴影部分的面积是【 】

设P为双曲线x2/4 - y2=1上一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹方程是____________.