问答题(1949年中北大学

设二曲线c1及c2的方程依次为x²+2xy-3y²+2x+2y+2=0及x²+y²-4=0,求

1) 过 c1 及 c2的交点的抛物线;

2) 过 c1 及 c2 的交点的二次曲线之心之轨迹.

答案解析

暂无答案

讨论

设 F1, F2 是双曲线 C : x2 −y2/3 = 1 的两个焦点, O 为坐标原点, 点 P 在 C 上且 |OP| = 2, 则 △PF1F2 的 面积为【 】

设双曲线 C : x2/a2 − y2/b2 = 1 (a > 0, b > 0) 的一条渐近线为 y = x, 则 C 的离心率为______.

设双曲线 C : x2/a2 -y2/b2 =1 (a > 0, b > 0) 的左、右焦点分别为 F1, F2, 离心率为. P是 C 上一点, 且 F1P⊥F2P . 若 △PF1F2 的面积为 4, 则 a =【 】

已知双曲线 C :x2/6-y2/3=1, 则 C 的右焦点的坐标为_______; C 的焦点到其渐近线的距离是 ______.

设双曲线 C 的方程为 x2/a2 -y2/b2 =1 (a > 0, b > 0), 过抛物线 y2 = 4x 的焦点和点 (0, b) 的直线为 l. 若 C 的一条渐近线与 l 平行, 另一条渐近线与 l 垂直, 则双曲线 C 的方程为【 】.

双曲线C1: x2/4-y2/b2 =1 与圆 C2 : x2 + y2 = 4 + b2 (b > 0) 交于点 A(xA, yA), 曲线 Γ 满足 x > |xA| 并在曲线 C1、C2 上.(1) 若 xA=, 求 b 的值;(2) b =, 圆 C2 与 x 轴交于点 F1, F2, P 在第一象限, |PF1| = 8, 求 ∠F1PF2;(3) 点 D(0,b2/2+2), 过该点的直线斜率为 -b/2 的直线 l 和 Γ 只有两个交点, 记作 M, N, 用 b 表示 ∙,并求其取值范围.

在平面直角坐标系 xOy 中, 若双曲线 x2/a2 -y2/5=1 (a > 0) 的一条渐近线方程为 y=/2 x , 则该双曲线的 离心率是_______.

已知方程 kx2+y2=4 ,其中k为实数。对于不同范围的k值,分别指出方程所代表图形的类型 ,并画出显示其数量特征的草图.

已知函数y=x2+(2m+1)x+m2-1(m为实数)(1) m是什么数值时,y的极值是0?(2) 求证:不论m是什么数值,函数图像(即抛物线)的顶点都在同一条直线l1上.画出m=-1,0,1时抛物线的草图,来检验这个结论.(3) 平行于l1的直线中,哪些与抛物线相交,哪些不相交?求证:任一条平行于l1而与抛物线相交的直线,被各抛物线截出的线段都相等.

设F1和F2为双曲线x2/4 - y2 = 1的两个焦点,点P在双曲线上且满足∠F1PF2 = 90°,则△F1PF2的面积是【 】

求圆x²+y²=17之切线,使平行于直线x+4y=5.

A,B,C 为共线之三定点,动点 P 至A,B与 B,C 所张之角恒相等,试求 P 点之轨迹.

已知一圆及一直线,求作该圆之切线,使其自切点至该直线间之线段,等于已知长.

设自 A 地量得敌人炮台所在地 B 及另一地 C 间之角 ∠ABC 为 70°20',自C 地量得 ∠ACB 为 62°50',且量得 AC 两地之距离为 10.6 公里问 A 地至敌人炮台之距离为若干?(sin62°50'= 0.8897;cos70°20' =0.3365)

设有一三角形ABC:假定A及B两顶为固定不移,其他一C在AC²+BC²=2/5 AB²之条件下运动,则其轨迹为何如?

两树相距 50 尺,在此树距地 5 尺处观他树之树顶与树根适成 90°之角,又观他树顶之仰角为 60°,求他树之高.

求已知圆 x²+y² - 6x +4y = 12 之两切方程式,与一已知线 4x + 3y +5=0平行.

在平地上一点 A,测得某山顶 P 之仰角 (elevation) 为 60°,自 A 点,在平地上,向山麓前进 800 尺至 B 点.自 B 点沿一与平地倾斜 30°之斜坡,再向山顶前进 800 尺,至 C 点,在 C 点测得山顶 P之仰角为 75°.若 A,B,C,P四点在一垂直平面内,求此山之高.

于 A,B,C 三阵地测得敌机之仰角为 60°,45°,45°,今 B 地在 A 地正北 3000尺,C 地在 A 地之正西 4000 尺,求敌机之高,并讨论之.

A tower of 20.7 feet high stands at the edge of the water on a bank of a river. From a point directly opposite to the tower on the other side of the river above the water, the angle of elevation of the top of the tower is 27°17' and the angle of depression of the image of its top in the water is 38°12'. Find the width of the river.