设O为圆心,AB为弦,延长AB至C,令BC等于圆半径,再引CO交圆于D,求证:∠BOC为∠DOA的1/3.
解反三角方程sin{2arccos(ctg(2arctgx))}=0.
设A+B+C=π,证明sinA+sinB+sinC=4 cos(A/2)cos(B/2)cos(C/2).
过原点作直线垂直于双曲线 x²-y² = a² 上一切线,求垂足之轨迹之极坐标方程.
有一圆锥曲线过(0,-2),(-2,0),(2,-8) 三点,且对称于原点,试求其方程,并判别其性质.
甲能解某题之几率为b/a,乙能解某题之几率为d/c,设甲与乙独自解之,试用两种方法,求某题能解之几率.
设a,b,c为方程x³+2x²+3x+4=0之根,求以a(1/b+1/c),b(1/c+1/a),c(1/a+1/b)为根之方程.
化(5x²-4x+16)/((x²-x+1)²(x-3))为部分分式.
证明:对于一组共轴圆 (co-axial circles) 一定点之诸极线 (polars) 必通过一定点,且一定直线之诸极 (poles) 必在一直线上.
设R为三角形之外接圆半径,试证 acosA+bcosB+ccosC = 4RsinAsinBsinC.
AO 为圆之半径,过垂直于此之直径上一点 B,引任意弦 BP,从此弦之一端P 引切线 PC 与OB 之延线会于 C,证 CB =CP.
设二圆之连心线交一圆于 A,B 两点,交第二圆于 D,C 二点,又交二圆之一外公切线于 P 点,设在连心线上,点 A 距 P 最近,点 D 距 P 最远,试证:PA· PD = PB·PC.
圆内接四边形 ABCD 内,∠A = 90°,AB = a,BC = b,其面积为 c²,求CD,DA 及圆半径之长.
圆之直径 AB 上任意取 P 点,又 CD 与直径平行,求证 AP² + BP²=CP² + DP².
A,B,C 为三定点,求作一圆过 A,B,使从 C 到此圆的切线等于定长.
已知PA,PB,PC为过圆周上点P三弦,PT为圆之切线,设有一直线与PT平行,交PA,PB,PC于A',B',C'三点.求证:PA∙PA'=PB∙PB'=PC∙PC'.