问答题(1977年北京市

一条直线过点(1,-3),并且与直线2x+y-5=0平行,求这条直线的方程.

参考答案

关键词

直线;方程;平行;斜率;数学;平面;解析几何;知识;并且;直线与方程;

已知二次函数y=x2﹣6x+5.(1)求出它的图象的顶点坐标和对称轴方程;(2)画出它的图象;(3)分别求出它的图象和x轴、y轴的交点坐标.

求过两直线x+y-7=0和3x-y-1=0的交点且过(1,1)点的直线方程.

已知过点P(0,3√2)且斜率为k的直线与圆心在原点半径为3的圆相交于M,N两点.(1)求M,N的坐标;(2)问当M,N重合时,k为何值?此时,过点P的直线和圆的位置关系如何?过样的直线有几条?它们的夹角是多大?

已知a,b,c分别表示△ABC的角A,B,C对边的长,求证:a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)=0.

已知菱形的一对内角各为60°,边长为4,以菱形对角线所在的直线为坐标轴建立直角坐标系,以菱形60°角的两个顶点为焦点,并且过菱形的另外两个顶点作椭圆,求椭圆方程.

已知椭圆短轴长为2,中心与抛物线y2=4x的顶点重合,椭圆的一个焦点恰是此抛物线的焦点,求椭圆方程及其长轴的长。

求椭园25x2+9y2=100的长轴和短轴的长、焦点坐标,并且画出它的图像。

如图,已知F是抛物线y2=2px(p>0)的焦点,M是抛物线的准线与x轴的交点,且|MF|=2. (1)求抛物线的方程;(2)设过点F的直线交抛物线于A,B两点,斜率为2的直线l与MA,MB,AB,x轴依次交于点P,Q,R,N,且|RN|2=|PN|∙|QN|,求直线l在x轴上截距的范围.

已知平面向量,,(≠0)满足| |=1,| |=2,∙=0,(- )∙=0.记向量在,方向上的投影分别为x,y,-在方向的投影为z,则x2+y2+z2的最小值为________.

椭圆x2/a2 +y2/b2 =1(a>b>0),焦点F1 (-c,0),F2 (c,0)(c>0),若过F1的直线和圆(x-1/2)2+y2=c2相切,与椭圆在第一象限交于点P,且PF2⊥x轴,则该直线的斜率是______,椭圆的离心率是______.

一只船以20海里/小时的速度向正东航行,起初船在A处看见一灯塔B在船的北45°东方向,一小时后船在C处看见这个灯塔在船的北15°东方向,求这时船和灯塔的距离CB.

某工厂今年七月份的产值为100万元,以后每月产值比上月增加20%,问今年七月份到十月份总产值是多少?

某电管所为实现农业现代化,加強电力网的建设,沿着一条通往农村的新公路栽电线杆,已知一辆汽车每次从电管所运3根电线杆,相邻两根电线杆的距离为50米,汽车往返的总行程是35.5公里,最后一根电线杆与电管所的距离是2450米.(1)问第一根电线杆与电管所的距离是多少?(2)共栽了多少根电线杆?

某工厂科研小组,对一项生产工艺过程总结出产量指标函数和消耗指标函数分别为:f1 (x)=ax2+1/2 x+C和f2 (x)=ax2+bx+5/4,且知f1 (-1)=f2 (-1)=f1 (3)=f2 (3)=2.(1)分别求出产量指标函数f1 (x)和消耗指标函数f2 (x)的具体表达式;(2)问因素x取何值时,f1 (x)和f2 (x)有最大值或最小值,最大值或最小值各是多少?(3)画出所求出的函数的略图.

如图,已知长方体的对角线长为l,它与底面所成的角为α,底面两条对角线的夹角为β.求长方体的积体.

利用积分计算椭圆x2/a2 +y2/b2 =1(a>b>0)所围成的面积.

将函数f(x)=ex展开为x的幂级数,并求出收敛区间.( e=2.718为自然对数)

工人师傅要用铁皮做一个上大下小的正四棱台形容器(上面开口),使其容积为208立方分米,高为4分米,上口边长与下底面边长的比为5:2,做这样的容器需要多少平方分米的铁皮?(不计容器的厚度和加工余量,不要求写出已知、求解,直接求解并画图即可)

某生产队要建立一个形状是直角梯形的苗圃,其两邻边借用夹角为135°的两面墙,另外两边是总长为30米的篱笆(如图,AD和DC为墙),问篱笆的两边各多长时,苗圃的面积最大?最大面积是多少?

河北省映射与函数