问答题(1977年北京市

当m取哪些值时,直线y=x+m与椭圆x2/16+y2/9=1有一个交点?有两个交点?

答案解析

暂无答案

讨论

已知F1,F2为椭圆C:x2/16+y2/4=1的两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2 |,则四边形PF1QF2的面积为________.

设B是椭圆C:x2/a2 +y2/b2 =1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率取值范围是【 】

设B是椭圆C:x2/5+y2=1的上顶点,点P在C上,则|PB|的最大值为【 】

已知椭圆E:x2/a2 +y2/b2 =1(a>b>0)过点A(0,-2),以四个顶点围成的四边形面积为4.(1)求椭圆E的标准方程;(2)过点P(0,-3)的直线l斜率为k,交椭圆E于不同的两点B,C,直线AB,AC交y=-3于点M,N,若|PM|+|PN|≤15,求k的取值范围.

已知Γ:x2/2+y2=1,F1,F2是其左、右焦点,直线l过点P(m,0)(m≤-),交椭圆于A,B两点,且A,B在x轴上方,点A在线段BP上.(1)若B是上顶点,||=||,求m的值;(2)若∙=1/3,且原点O到直线l的距离为4/15,求直线l的方程;(3)证明:对于任意m<-,使得//的直线有且仅有一条.

已知椭圆x2/a2 +y2/b2 =1(a>b>0)的右焦点为F,上顶点为B,离心率为(2√5)/5,且|BF|=√5.(1)求椭圆的方程;(2)直线l与椭圆有唯一的公共点M,与y轴的正半轴交于点N,过N与BF垂直的直线交x轴于点P,若MP//BF,求直线l的方程.

设 P 为圆上之任意点,且 F 为一焦点,证明以 FP 及椭圆之长轴各为直径之圆必相内切.

设椭圆C1:x²/a² +y²=1(a>1),C2:x²/4+y²=1的离心率分别为e1,e2,若e2=√3e1,则a=【 】

已知椭圆C:x²/3+y²=1的左、右焦点分别为F1,F2,直线y=x+m与C交于A,B两点,若△F1AB的面积是△F2AB面积的2倍,则m=【 】

已知椭圆E:x²/a² +y²/b² =1(a>b>0)的离心率为√3/5.设椭圆E的上、下顶点分别为A,C,左、右顶点分别为B,D,|AC|=4.(1)求椭圆E的方程;(2)点P在椭圆E的第一象限上运动,直线PD与直线BC交于点M,直线AP与直线y=-2交于点N.求证:MN//CD.

在 △ABC 中, 角 A, B, C 所对的边分别为 a, b, c. 已知 a = 2√2, b = 5, c = .(I) 求角 C 的大小;(II) 求 sin A 的值;(III) 求 sin⁡(2A+π/4) 的值.

已知单位向量 e1, e2 满足|e1-e2 |≤, 设 a = e1 + e2, b = 3e1 + e2, 向量 a, b 的夹角为 θ, 则 cos2θ的最小值为_______.

在锐角 △ABC 中, 角 A, B, C 的对边分别为 a, b, c, 且 2bsinA − a = 0.(I) 求角 B;(II) 求 cosA + cosB + cosC 的取值范围.

在 △ABC 中, AB = 4, AC = 3, ∠BAC = 90º, D 在边 BC 上, 延长 AD 到 P , 使得 AP = 9. 若=m+(3/2-m) (m 为常数), 则 CD 的长度是__________.

在平面直角坐标系 xOy 中, 已知 P(/2,0), A、 B 是圆 C : x2+(y-1/2)2=36上的两个动点, 满足 P A = P B, 则 △P AB 面积的最大值是______.

在 △ABC 中, 角 A、 B、 C 的对边分别为 a、 b、 c. 已知 a = 3, c = , B = 45º. (1) 求 sinC 的值;(2) 在边 BC 上取一点 D, 使得 cos∠ADC =-4/5, 求 tan∠DAC 的值.

外国船只,除特许者外,不得进人离我海岸线 d海里的区域.设 A 及 B 是我们的观测站 , A 及 B 间的距离为s海里,海岸线是过 A 、B 的直线. 一外国船只在P点.在 A 站测得∠BAP=α ,同时在 B 站测得∠ABP=β,问及满足什么简单的三角函数值不等式,就应当向此未经特许的外国船只发出警告,命令退出我海域?

设等腰△OAB的顶角为 2θ,高为h.(1) 在△OAB内有一动点P,到三边OA,OB,AB的距离分别为|PD|,|PF|,|PE|,并且满足关系式|PD|∙|PF|=|PE|2,求P点的轨迹.(2) 在上述轨迹中定出点P的坐标,使得|PD|+|PE|=|PF|.

如果圆x2+y2+Gx+Ey+F=0与x轴相切于原点,那么【 】。

在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,且c=10, cosA/cosB=b/a=4/3, P为△ABC的内切圆上的动点.求点P到顶点A,B,C的距离的平方和的最大值与最小值.