填空题(2023年北京市

已知在△ABC中,a=2b,cosB=2√2/3,则sin⁡(A-B)/2+sin⁡C/2=__________.

答案解析

√10/3

【解析】

解答过程见word版

讨论

记△ABC的内角A,B,C的对边分别为a,b,c﹐已知sin⁡C sin⁡(A-B)=sin⁡Bsin⁡(C-A).(1)若A=2B,求C;(2)证明:2a2=b2+c2.

在△ABC中,sin2C=√3 sinC.(1)求∠C;(2)若b=6,且△ABC的面积为6√3,求△ABC的周长.

我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S=,其中a,b,c是三角形的三边,S是三角形的面积.设某三角形的三边a=√2,b=√3,c=2,则该三角形的面积S=___________.

在△ABC中,角A,B,C所对的边分别为a,b,c.已知4a=√5 c,cos⁡C=3/5.(1)求sin⁡A的值;(2)若b=11,求△ABC的面积.

已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和D(0,1).一质点从AB的中点P_0沿与AB夹角为θ的方向射到BC上的点P1后,依次反射到CD,DA和AB上的点P2,P3和P4(入射角等于反射角).设P4的坐标为(x4,0).若1<x4<2,则tanθ的取值范围是【 】

在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南θ(θ=arccos⁡(√2/10))方向300km的海面P处,并以20km/h的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大.问几小时后该城市开始受到台风的侵袭?

在∆ABC中,a=√6,b=2c,cosC=-1/4.(1)求∠C的大小;(2)求sinB的值;(3)求sin⁡(2A-B)的值.

函数f(x)=a-√3tan2x在闭区间[-π/6,b]上的最大值为7,最小值为3,则a×b的值为【 】

设A,B,C与a,b,c依次为一三角形之三角与三边,试证a/(b+c)=

英:Show how to describe a triangle having given its angles and its perimeter.汉:己知三角形三角及周长,解此三角形.

已知椭圆x2/2+y2=1的右准线l与x轴相交于点E,过椭圆右焦点F的直线与椭圆相交于A,B两点,点C在右准线l上,且BC//x轴.求证直线AC经过线段EF的中点.

已知F1,F2是椭圆C:x2/9+y2/4=1的两个焦点,点M在C上,则|MF1|∙|MF2|的最大值为【 】

已知点P在圆(x-5)2+(y-5)2=16上,点A(4,0),B(0,2),则【 】

在平面直角坐标系xOy中,已知点F1(-,0),F2 (,0),点M满足:|MF1|-|MF2|=2.记M的轨迹为C.(1)求C的方程;(2)设点T在直线x=1/2上,过T的两条直线分别交C于A,B两点和P,Q两点,且|TA|∙|TB|=|TP|∙|TQ|,求直线AB的斜率与直线PQ的斜率之和.

已知F1,F2是双曲线C的两个焦点,P为C上一点,且∠F1PF2=60°,|PF1|=3|PF2|,则C的离心率为【 】

已知F1,F2为椭圆C:x2/16+y2/4=1的两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2 |,则四边形PF1QF2的面积为________.

抛物线C的顶点为坐标原点O.焦点在x轴上,直线l:x=1交C于P,Q两点,且OP⊥OQ.已知点M(2,0),且⨀M与l相切.(1) 求C,⨀M的方程;(2) 设A1,A2,A3是C上的三个点,直线A1A2,A1A3均与⨀M相切.判断直线A2A3与⨀M的位置关系,并说明理由.

点(3,0)到双曲线x2/16 - y2/9=1的一条渐近线的距离为【 】

设B是椭圆C:x2/a2 +y2/b2 =1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率取值范围是【 】

已知双曲线x2/m - y2=1(m>0)的一条渐近线为 x+my=0,则C的焦距为________.