填空题(2010年上海市

从一副混合后的扑克牌(52张)中,随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得黑桃”,则概率P(A∪B)= ________(结果用简分数表示).

答案解析

7/26

讨论

从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.

甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表: 准点班次数 未准点班次数A 240 20B 210 30(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:K2=n(ad-bc)2/((a+b)(c+d)(a+c)(b+d)),P(K2⩾k) 0.100 0.050 0.010k 2.706 3.841 6.635

从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.

52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A的概率为______;已知第一次抽到的是A,则第二次抽到A的概率为______.

有6张卡片,正面分别写有数字1~6,背面都写有数字0.起初将这些卡片正面朝上排成一排,且第k个位置上的卡片恰写有数字k.下面利用这6张卡片和一枚均匀的骰子进行如下实验:掷出骰子,若点数为k,则将第k个位置上的卡片翻面,放在原处。进行上述实验3次,若卡片朝上的数字之和为偶数,在这一条件下,骰子恰有一次点数为1的概率为q/p.求p+q的值(p,q为互质整数)

假设P1,P2两人进行比赛,每回合两人分别投掷一枚均匀的骰子,设x,y分别为P1,P2投出的点数,若x>y,记P1得5分,P2得0分;若x=y,记P1,P2均得2分;若x<y,记P1得0分,P2得5分.设Xi,Yi分别为第i回合后P1,P2的总得分.列Ⅰ 列Ⅱ(Ⅰ)P(X2≥Y2 )= (P) 3/8(Ⅱ)P(X2>Y2 )= (Q) 11/16(Ⅲ)P(X3=Y3 )= (R) 5/16(Ⅳ)P(X3>Y3 )= (S) 355/864 (T) 77/432正确的选项为【 】

掷骰一粒,连掷十次,求掷得四次六点之几率.

一颗质地均匀的正方体骰子,六个面上分别标有点数1,2,3,4,5,6.随机抛掷该骰子三次(各次抛掷结果相互独立),所得的点数依次为a1,a2,a3,则事件|a1-a2 |+|a2-a3 |+|a3-a1 |=6发生的概率为__________.

甲乙各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分.然后各自弃置此轮所选的卡片(弃置的卡片在此后的伦次中不能使用),则四轮比赛后,甲的总得分不小于乙的概率为______.

已知甲、乙两球落入盒子的概率分别为 1/2和 1/3. 假定两球是否落入盒子互不影响, 则甲、乙两球都落入盒子的概率为______; 甲、乙两球至少有一个落入盒子的概率为______.

设O为正方形 ABCD 的中心, 在 O,A,B,C,D 中任取 3 点, 则取到的 3 点共线的概率为【 】

甲乙两人投篮, 每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮. 无论之前投篮情况如何, 甲每次投篮的命中率均为 0.6,乙每次投篮的命中率均为0.8,由抽签决定第一次投篮的人选,第一次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i次投篮的人是甲的概率;(3)已知:若随机变量X_i服从两点分布,且P(Xi=1)=1-P(Xi=0)=qi,i=1,2,⋯,n,则E(Xi )=qi ,记前n次(即从第1次到第n次投篮)中甲投篮的次数为Y,求E(Y).

为研究某种农产品价格变化的规律,收集得到了该农产品连续40天的价格变化数据,如下表所示.在描述价格变化时,用“+”表示“上涨”,即当天价格比前一天价格高;用“-”表示“下跌”,即当天价格比前一天价格低;用“0”表示“不变”,即当天价格与前一天价格相同.时段 价格变化第1天到第20天 - + + 0 - - - + + 0 + 0 - - + - + 0 0 +第21天到第40天 0 + + 0 - - - + + 0 + 0 + - - - + 0 - +用频率估计概率.(1)试估计该农产品价格“上涨”的概率;(2)假设该农产品每天的价格变化是相互独立的,在未来的日子里任取4天,试估计该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概;(3)假设该农产品每天的价格变化只受前一天价格变化的影响,判断第41天该农产品价格“上涨”“下跌”和“不变”的概率估计值哪个最大(结论不要求证明).

已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)= ____________.

为了检则学生的身体素质指标,从游泳类1项,球类3项,田径类4项共8项项目中随机抽取4项进行检则,则每一类都被抽到的概率为________.

在矩形ABCD中,AD=2AB,E,F分别为AD,BC的中点,从A、B、C、D、E、F中任选三个点,则这三个点为顶点可组成的直角三角形的概率【 】

将一颗质地均匀的正方体骰子先后抛掷 2 次, 观察向上的点数, 则点数和为 5 的概率是______.

某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图: 利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为p(c);误诊率是将未患病者判定为阳性的概率,记为q(c).假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)当漏诊率p(c)=0.5%时,求临界值c和误诊率q(c);(2)设函数f(c)=p(c)+q(c),当c∈[95,105]时,求f(c)的解析式,并求f(c)在区间[95,105]的最小值。

已知花博会有四个不同的场馆A、B、C、D,甲、乙两人每人选2个去参观,则他们的选择中,恰有一个馆相同的概率为__________.

甲、乙两人在毎次猜谜语活动中各猜—个谜语,若一方猜对且另一方猜错,则猜对一方获胜,否则本次平局。已知每次活动中,甲乙猜对的概率分别为5/6和3/5,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为__________;3次活动中,甲至少获胜2次的概率为__________.