填空题(2022年天津市

52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A的概率为______;已知第一次抽到的是A,则第二次抽到A的概率为______.

答案解析

1/221,1/17

【解析】

第一次抽取到A的概率为:4/52=1/13,

第二次抽取到A的要编为:3/51=1/17,

连续两次都抽取到A的概率为:1/13×1/17=1/221.

讨论

直线x-y+m=0(m>0)与圆(x-1)2+(y-1)2=3相交所得的弦长为m,则m=______.

(√x+3/x2)5展开式中的常数项为________.

“x为整数”是“2x+1”为整数的【 】条件.

设全集U={ -2, -1,0,1, 2} ,集合 A = {0,1, 2}, B = {-1,1},则A∩(CUB)=【 】

已知i是虚数单位,化简(11-3i)/(1+2i)的结果为________.

(I)设{an}是集合{2t+2s |0≤s<t,s,t∈Z}中所有的数从小到大排列成的数列,即a1=3,a2=5,a3=6,a4=9,a5=10,a6=12,⋯将数列{an}各项按照上小下大,左小右大的原则写成如下的三角形数表:35 69 10 12⋯ ⋯ ⋯ ⋯⋯ ⋯ ⋯ ⋯ ⋯⋯⋯(i)写出这个三角形数表的第四行、第五行各数;(ii)求a100.(Ⅱ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)设{bn}是集合{2t+2s+2r |0≤r<s<t,r,s,t∈Z}中所有的数从小到大排列成的数列,已知bk=1160,求k.

已知常数a>0,在矩形ABCD中,AB=4,BC=4a,O为AB的中点,点E,F,G分别在BC,CD,DA上移动,且BE/BC=CF/CD=DG/DA,P为GE与OF的交点(如图).问是否存在两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.

在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南θ(θ=arccos⁡(√2/10))方向300km的海面P处,并以20km/h的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大.问几小时后该城市开始受到台风的侵袭?

已知c>0.设P:函数y=cx在R上单调递减.Q:不等式x+|x-2c|>1的解集为R.如果P和Q有且仅有一个正确,求c的取值范围.

如图,在直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,∠ACB=90°.侧棱AA1=2,D,E分别是CC1与A1B的中点,点E在平面ABD上的射影是△ABD的重心G.(I)求A1B与平面ABD所成角的大小(结果用反三角函数值表示);(Ⅱ)求点A1到平面AED的距离.

从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为【 】

从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.

甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表: 准点班次数 未准点班次数A 240 20B 210 30(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:K2=n(ad-bc)2/((a+b)(c+d)(a+c)(b+d)),P(K2⩾k) 0.100 0.050 0.010k 2.706 3.841 6.635

从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.

已知甲、乙两球落入盒子的概率分别为 1/2和 1/3. 假定两球是否落入盒子互不影响, 则甲、乙两球都落入盒子的概率为______; 甲、乙两球至少有一个落入盒子的概率为______.

从一副混合后的扑克牌(52张)中,随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得黑桃”,则概率P(A∪B)= ________(结果用简分数表示).

甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个.甲、乙二人依次各抽一题.(I)甲抽到选择题、乙抽到判断题的概率是多少?(II)甲、乙二人中至少有一个人抽到选择题的概率是多少?

将3个1和2个0随机排成一行,则2个0不相邻的概率为【 】

已知花博会有四个不同的场馆A、B、C、D,甲、乙两人每人选2个去参观,则他们的选择中,恰有一个馆相同的概率为__________.

从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为【 】

如图,用A,B,C三类不同的元件连接成两个系统N1 N2.当元件A,B,C都正常工作时,系统N1正常工作; 当元件A正常工作且元件B,C至少有一个正常工作; 时,系统N2正常工作.已知元件A,B,C正常工作的概率依次为0.80,0.90,0.90分别求系统N1 N2正常工作的概率P1 P2.

有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则【 】

甲、乙两人在毎次猜谜语活动中各猜—个谜语,若一方猜对且另一方猜错,则猜对一方获胜,否则本次平局。已知每次活动中,甲乙猜对的概率分别为5/6和3/5,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为__________;3次活动中,甲至少获胜2次的概率为__________.

某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜 概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则【 】

在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m以上(含9.50m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)

为了检则学生的身体素质指标,从游泳类1项,球类3项,田径类4项共8项项目中随机抽取4项进行检则,则每一类都被抽到的概率为________.

甲、乙、丙三位同学进行羽毛球比赛, 约定赛制如下:累计负两场者被淘汰; 比赛前抽签决定首先比赛的两人, 另一人轮空; 每场比赛的胜者与轮空者进行下一场比赛, 负者下一场轮空, 直至有一人被淘汰; 当一人被淘汰后, 剩余的两人继续比赛, 直至其中一人被淘汰, 另一人最终获胜, 比赛结束.经抽签, 甲、乙首先比赛, 丙轮空. 设每场比赛双方获胜的概率都为 1/2.(1) 求甲连胜四场的概率;(2) 求需要进行第五场比赛的概率;(3) 求丙最终获胜的概率.

在新冠肺炎疫情防控期间, 某超市开通网上销售业务, 每天能完成 1200 份订单的配货, 由于订单量大幅增 加, 导致订单积压, 为解决困难, 许多志愿者踊跃报名参加配货工作. 已知该超市某日积压 500 份订单未配货, 预计第二天新订单是 1600 份的概率为 0.05. 志愿者每人每天能完成 50 份订单的配货, 为使第二天积压订单及当日订 单配货的概率不小于 0.95, 则至少需要志愿者【 】

某校为举办甲、乙两项不同活动, 分别设计了相应的活动方案: 方案一、方案二. 为了解该校学生对活动方案是否支持, 对学生进行简单随机抽样, 获得数据如下表:假设所有学生对活动方案是否支持相互独立.(I) 分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(II) 从该校全体男生中随机抽取 2 人, 全体女生中随机抽取 1 人, 估计这 3 人中恰有 2 人支持方案一的概率;(III) 将该校学生支持方案二的概率估计值记为 p0. 假设该校一年级有 500 名男生和 300 名女生, 除一年级外其他年级学生支持方案二的概率估计值记为 p1. 试比较 p0 与 p1 的大小. (结论不要求证明)

将一颗质地均匀的正方体骰子先后抛掷 2 次, 观察向上的点数, 则点数和为 5 的概率是______.