袋中装有1个写有数字1的白球、1个写有数字2的白球、1个写有数字1的黑球和3个写有数字2的黑球。一次性从袋中随机取出3个球,记“取出的是1个白球、2个黑球”为事件A,“3个球上数字的乘积为8”为事件B,则P(A∪B)为【 】
A、11/20
B、3/5
C、13/20
D、7/10
E、3/4
袋中装有1个写有数字1的白球、1个写有数字2的白球、1个写有数字1的黑球和3个写有数字2的黑球。一次性从袋中随机取出3个球,记“取出的是1个白球、2个黑球”为事件A,“3个球上数字的乘积为8”为事件B,则P(A∪B)为【 】
A、11/20
B、3/5
C、13/20
D、7/10
E、3/4
暂无答案
盒子中装有5个白色口罩和9个黑色口罩.一次性从盒中随机抽取3个口罩,至少有一个白色口罩的概率是【 】
从数字1,2,3,4,5可重复地选出4个,能排列成多少个大于4000的奇数【 】
对于正整数n,函数f(x)定义如下:f(x)=对于实数t,记方程f(x)=t的不同实数解的数量为g(t),求使得函数g(t)的最大值为4的所有正整数n的和.
点P在直线上运动,t(t≥0)时刻的速度v(t)和加速度a(t)满足以下条件:(1)当0≤t≤2时,v(t)=2t3-8t.(2)当t≥2时,a(t)=6t+4.求点P从t=0到t=3时刻移动的距离.
求使方程2x3-6x2+k=0恰有2个互异实数解的整数k共有多少个.
数列{an },{bn}满足(3ak+5)=55,(ak+bk)=32,求bk 的值.
某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜 概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则【 】
从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.
为了检则学生的身体素质指标,从游泳类1项,球类3项,田径类4项共8项项目中随机抽取4项进行检则,则每一类都被抽到的概率为________.
52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A的概率为______;已知第一次抽到的是A,则第二次抽到A的概率为______.
已知甲、乙两球落入盒子的概率分别为 1/2和 1/3. 假定两球是否落入盒子互不影响, 则甲、乙两球都落入盒子的概率为______; 甲、乙两球至少有一个落入盒子的概率为______.
从一副混合后的扑克牌(52张)中,随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得黑桃”,则概率P(A∪B)= ________(结果用简分数表示).
已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)= ____________.
连续型随机变量X的取值范围为0≤X≤a,X的概率密度函数图像如下所示: 若P(X≤b)-P(X≥b)=1/4,P(x≤√5)=1/2,则a+b+c的值为【 】
设f(x)为多项式函数,g(x)=x2 f(x),若f(2)=1,f'(2)=3,则g'(2)的值为【 】
过点(0,4)作曲线y=x3-x+2的切线,这条切线在x轴上的截距为【 】
等差数列{an}的各项均为正数,首项与公差相等,=2,则a4的值为【 】
在各项均为正数,且满足下列条件的数列{an}中,a9可能的最大值和最小值分别为M和m,则M+m的值为【 】(1) a7=40(2)对于任意正整数n,an+2=