单项选择(2022年11月韩国

过点(0,4)作曲线y=x3-x+2的切线,这条切线在x轴上的截距为【 】

A、-1/2

B、-1

C、-3/2

D、-2

E、-5/2

答案解析

暂无答案

讨论

已知函数f(x)=x3-x,g(x)=x2+a,曲线y=f(x)在点(x1,f(x1))处的切线也是曲线y=g(x)的切线.(1)若x1=-1,求a;(2)求a的取值范围.

已知x=x1和x=x2分别是函数f(x)=2ax-e⁡x2(a>0且a≠1)的极小值点和极大值点.若x1<x2,则a的取值范围是____________.

已知函数f(x)=ln⁡(1+x)+axe-x(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在区间(-1,0),(0,+∞)各恰有一个零点,求a的取值范围.

已知函数f(x)=ax-1/x-(a+1)ln⁡x.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.

已知函数f(x)=ex ln⁡( 1+x).(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设g(x)=f'(x),讨论函数g(x)在[0,+∞)上的单调性;(3)证明:对任意的s,t∈(0,+∞),有f(s+t)>f(s)+f(t).

设函数f(x)=e/2x+ln⁡x (x>0).(1)求f(x)的单调区间;(2)已知a,b∈R,曲线y=f(x)上不同的三点(x1,f(x1 )),(x2,f(x2 )),(x_3,f(x_3 ))处的切线都经过点(a,b).证明:(ⅰ)若a>e,则0<b-f(a)<1/2 (a/e-1);(ⅱ)若0<a<e,x1<x2<x_3,则2/e+(e-a)/(6e2 )<1/x1 +1/x_3 <2/a-(e-a)/(6e2 ).(注:e=2.71828⋯是自然对数的底数)

设f(x)=ex-asinx,g(x)=b√x.(1)求函数y=f(x)在(0,f(0))处的切线方程;(2)若y=f(x)与y=g(x)有公共点,ⅰ)当a=0时,求b的取值范围;ⅱ)求证:a2+b2>e.

已知函数f(x)=ln⁡x/(2-x)+ax+b(x-1)³.(1)若b=0,且f'(x)≥0,求a的最小值;(2)证明:曲线f(x)为中心对称函数;(3)若f(x)>-2,当且仅当1<x<2,求b的取值范围.

曲线 y = lnx + x + 1 的一条切线的斜率为 2, 则该切线的方程为 ________________.

已知函数 f(x) = aex−1 − ln x + ln a.(1) 当 a = e 时, 求曲线 y = f(x) 在点 (1, f(1)) 处的切线与两坐标轴围成的三角形的面积;(2) 若 f(x) ⩾ 1, 求 a 的取值范围.

当x=1时,函数f(x)=a ln⁡x+b/x取得最大值-2,则f'(2)=【 】

若曲线y=ex+x在点(0,1)处的切线也是曲线y=ln⁡(x+1)+a的切线,则a=______.

函数 f(x) = x4 − 2x3 的图像在点 (1, f(1)) 处的切线方程为【 】。

设函数 f(x) = ex/(x+a). 若 f′(1) = e/4 , 则 a = ______.

设函数 f(x) = x3 + bx + c, 曲线 y = f(x) 在点 (1/2 , f(1/2))处的切线与 y 轴垂直.(1) 求 b;(2) 若 f(x) 有一个绝对值不大于 1 的零点, 证明: f(x) 的所有零点的绝对值都不大于 1.

已知函数 f(x) = 12 − x2.(I) 求曲线 y = f(x) 的斜率等于 −2 的切线方程;(II) 设曲线 y = f(x) 在点 (t, f(t)) 处的切线与坐标轴围成的三角形的面积为 S(t), 求 S(t) 的最小值.

已知函数 f(x)=x3+klnx (k ∈ R) , f′(x) 为 f(x) 的导函数.(I) 当 k = 6 时,(i) 求曲线 y = f(x) 在点 (1, f(1)) 处的切线方程;(ii) 求函数 g(x)=f(x)+f'(x)+9/x 的单调区间和极值;(II) 当 k ⩾ −3 时, 求证: 对任意的 x1, x2 ∈ [1, +∞), 且 x1 > x2, 有f'(x1+x2)/2 > (f(x1 )-f(x2))/(x1-x2 ) .

某地准备在山谷中建一座桥梁, 桥址位置的竖直截面图如图所示: 谷底 O 在水平线 MN 上, 桥 AB 与 MN平行, OO′为铅垂线 (O′在 AB 上), 经测量, 左侧曲线 AO 上任一点 D 到 MN 的距离 h1 (米) 与 D 到 OO′ 的距离 a (米) 之间满足关式 h1=1/40 a2 ; 右侧曲线 BO 上任一点 F 到 MN 的距离 h2 (米) 与 F 到 OO′的距离 b (米)之间满足关系式 h2=-1/800 b3+6b . 已知点 B 到 OO′的距离为 40 米.(1) 求桥 AB 的长度;(2) 计划在谷底两侧建造平行于 OO′的桥墩 CD 和 EF , CE 为 80 米, 其中 C, E 在 AB 上 (不包括端点), 桥墩 EF 每米造价 k (万元), 桥墩 CD 每米造价 3/2 k (万元) (k > 0), 问 O′E为多少米时, 桥墩 CD 与 EF 的总造价最低?

已知关于 x 的函数 y = f(x), y = g(x) 与 h(x) = kx + b (k, b ∈ R) 在区间 D 上恒有 f(x) ⩾ h(x) ⩾ g(x).(1) 若 f(x) = x2 + 2x, g(x) = −x2 + 2x, D = (−∞, +∞), 求 h(x) 的表达式;(2) 若 f(x) = x2 − x + 1, g(x) = k ln x, h(x) = kx − k, D = (0, +∞), 求 k 的取值范围;(3) 若 f(x) = x4−2x2, g(x) = 4x2−8, h(x) = 4(t3−t)x−3t4+2t2 (0 < |t| ⩽), D = [m, n] ⊂ [-, ].求证: n − m ⩽.

求y=cos2 的导数.