单项选择(2022年全国甲·理2022年全国甲·文

当x=1时,函数f(x)=a ln⁡x+b/x取得最大值-2,则f'(2)=【 】

A、-1

B、-1/2

C、1/2

D、1

答案解析

B因为函数f(x)定义域为(0,+∞),所以依题可知,f(1)=-2,f' (1)=0,而f' (x)=a/x-b/x2 ,所以b=-2,a-b=0,即a=-2,b=-2,所以f' (x)=-2/x+...

查看完整答案

讨论

函数y=(3x-3-x) cos⁡x在区间[-π/2,π/2]的图像大致为【 】

如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为【 】

设全集U={-2,-1,0,1,2,3},集合A={-1,2},B={x∣x2-4x+3=0},则∁U(A∪B)=【 】

从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为【 】

某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则【 】

若z=-1+√3 i,则z/(zz ̄-1)=【 】

记△ABC的三个内角分别为A,B,C,其对边分别为a,b,c,分别以a,b,c为边长的三个正三角形的面积依次为S1,S2,S3,已知S1-S2+S3=√3/2,sin⁡B=1/3.(1)求△ABC的面积;(2)若sin⁡A sin⁡C=√2/3,求b.

已知函数f(x)=xeax-ex.(1)当a=1时,讨论f(x)的单调性;(2)当x>0时,f(x)<-1,求a的取值范围;(3)设n∈N^*,证明:1/+1/+⋯+1/>ln⁡( n+1).

设双曲线C:x2/a2 -y2/b2 =1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±√3 x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P(x1,y1 ),Q(x2,y2)在C上,且x1>x2>0,y1>0.过P且斜率为-√3的直线与过Q且斜率为 的直线交于点M,请从下面①②③中选取两个作为条件,证明另外一个条件成立:①M在AB上;②PQ//AB;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.

如图,PO是三棱锥P-ABC的高,PA=PB,AB⊥AC,E是PB的中点.(1)求证:OE//平面PAC;(2)若∠ABO=∠CBO=30°,PO=3,PA=5,求二面角C-AE-B的正弦值.