不定项选择(2022年印度

对于x∈R,微分方程dy/dx+12y=cos⁡(πx/12),y(0)=0的解为y(x),下列叙述正确的有【 】

A、y(x)是增函数

B、y(x)是减函数

C、存在实数β,使直线y=β与y=y(x)的图像有无数个交点

D、y(x)是周期函数

答案解析

暂无答案

讨论

设i ̂,j ̂,k ̂分别为与三个坐标轴平行的单位向量,有向量a→=3i ̂+j ̂-k ̂,b→=i ̂+b2 j ̂+b3 k ̂,c→=c1 i ̂+c2 j ̂+c3 k ̂,其中,b2,b3,c1,c2,c3均为实数,且b2 b3>0,a→∙b→=0,=,则下列叙述正确的有【 】

设G为半径为R的圆,G1,G2,⋯,Gn为半径为r的圆,已知G1,G2,⋯,Gn均外切于G,对于i=1,2,⋯,n-1,Gi与Gi+1外切,且Gn与G1外切,则下列叙述正确的有【 】

论说文:根据下述材料写一篇 700 字左右的论说文,题目自拟。人们常说:“领导艺术”。可见领导与艺术之间存在着某种相似点,如领导一个团队完成某项任务就像指挥一个乐队演奏某首乐曲一样。

论证有效性分析:分析下述论证中存在的缺陷和漏洞,选择若干要点,写一篇 600 字左右的文章,对该论证的有效性进行分析和评述。(论证有效性分析的一般要点是:概念及主要概念界定和使用的准确性及前后是否互相矛盾,有无各种明显的逻辑错误,论据是否支持结论,论据的成立条件是否充分。还要注意逻辑结构和语言运用。)随着人口老龄化,大家都在谈论老年人还要不要继续工作的话题,我们认为,老年人应该继续工作。我国《宪法》规定:“中华人民共和国公民有劳动的权利和义务。”由此可见,老年人继续工作是法律赋予他们的权利。据统计,我国 2019 年的人均预期寿命已经达到 77.3 岁,这说明老年人的健康水平大大提高了所以老年人完全有能力继续工作。如果老年人不再继续工作而退出劳动力市场,就势必会打破劳动力市场的原有平衡,从而造成社会劳动力的短缺,如果老年人继续工作,就能有效地避免这一问题。此外,老年人有权利享受更高质量的生活。他们想要增加收入、改善生活,就应该继续工作。再说,有规律的生活方式有益于身体健康,而工作实质上是一种有规律的生活方式,所以老年人继续工作还有益于其身体健康。

某机关甲、乙、丙、丁4人参加本年度综合考评。在德、能、勤、绩、廉 5个方面的单项考评中,他们之中都恰有3人被评为“优秀”,但没有人5个单项均被评为“优秀”。已知:(1)若甲和乙在德方面均被评为“优秀”,则他们在廉方面也均被评为“优秀”;(2)若乙和丙在德方面均被评为“优秀”,则他们在绩方面也均被评为“优秀”;(3)若甲在廉方面被评为“优秀”,则甲和丁在绩方面均被评为“优秀”。若甲在绩方面未被评为“优秀”且丁在能方面未被评为“优秀”,则可以得出以下哪项?

某机关甲、乙、丙、丁4人参加本年度综合考评。在德、能、勤、绩、廉 5个方面的单项考评中,他们之中都恰有3人被评为“优秀”,但没有人5个单项均被评为“优秀”。已知:(1)若甲和乙在德方面均被评为“优秀”,则他们在廉方面也均被评为“优秀”;(2)若乙和丙在德方面均被评为“优秀”,则他们在绩方面也均被评为“优秀”;(3)若甲在廉方面被评为“优秀”,则甲和丁在绩方面均被评为“优秀”。根据上述信息,可以得出以下哪项?

甲:张某爱出风头,我不喜欢他。乙:你不喜欢他没关系,他工作一直很努力,成绩很突出。以下哪项与上述反驳方式最为相似?

入冬以来,天气渐渐寒冷。11 月 30 日,某地气象台对未来 5 天的天气预报显示:未来5天每天的最高气温从4°C开始逐日下降至-1°C;每天的最低气温不低于-6°C:最低气温-6°C只出现在其中一天。预报还包含如下信息:(1) 未来5 天中最高气温和最低气温不会出现在同一天,每天的最高气温和最低气温均为整数;(2)若5号的最低气温是未来 5 天中最低的,则2号的最低气温比4 号的高4°C;(3)2号和4号每天的最高气温与最低气温之差均为 5°C.根据以上预报信息,可以得出以下哪项?

通过第三方招聘进入甲公司从事销售工作的职员均具有会计学专业背景。孔某的高中同学均没有会计学专业背景,甲公司销售部经理孟某是孔某的高中同学,而孔某是通过第三方招聘进入甲公司的。根据以上信息,可以得出以下哪项?

某公司为了让员工多运动,近日出台一项规定:每月按照18 万步的标准对员工进行考核,如果没有完成步行任务,则按照“一步一分钱”标准扣钱。有专家认为,此举鼓励运动,看似对员工施加压力,实质上能够促进员工的身心健康,引导整个企业积极向上。以下各项如果为真,则除哪项外均能质疑上述专家的观点?

设函数 f(x) = x3 + bx + c, 曲线 y = f(x) 在点 (1/2 , f(1/2))处的切线与 y 轴垂直.(1) 求 b;(2) 若 f(x) 有一个绝对值不大于 1 的零点, 证明: f(x) 的所有零点的绝对值都不大于 1.

已知函数 f(x)=x3+klnx (k ∈ R) , f′(x) 为 f(x) 的导函数.(I) 当 k = 6 时,(i) 求曲线 y = f(x) 在点 (1, f(1)) 处的切线方程;(ii) 求函数 g(x)=f(x)+f'(x)+9/x 的单调区间和极值;(II) 当 k ⩾ −3 时, 求证: 对任意的 x1, x2 ∈ [1, +∞), 且 x1 > x2, 有f'(x1+x2)/2 > (f(x1 )-f(x2))/(x1-x2 ) .

如图,已知圆心为O、半径为1的圆与直线l相切于点A,一动点P自切点A沿直线l向右移动时,取弧的长为2/3AP,直线PC与直线AO交于点M.又知当AP=3π/4时,点P的速度为v,求这时点M的速度.

对于函数f(x),已知f'(x)=4x3-2x,且f(0)=3,求f(2)的值.

Find the area bounded by the curves.y = sinx of y = 1/2sinx between x = 0 and x = π.

不大于log2⁡(x3+1)dx+(2x-1)1/3dx的最大整数是______.

函数 f(x) = x4 − 2x3 的图像在点 (1, f(1)) 处的切线方程为【 】。

(n+1)/(3n+2)=________.

某地准备在山谷中建一座桥梁, 桥址位置的竖直截面图如图所示: 谷底 O 在水平线 MN 上, 桥 AB 与 MN平行, OO′为铅垂线 (O′在 AB 上), 经测量, 左侧曲线 AO 上任一点 D 到 MN 的距离 h1 (米) 与 D 到 OO′ 的距离 a (米) 之间满足关式 h1=1/40 a2 ; 右侧曲线 BO 上任一点 F 到 MN 的距离 h2 (米) 与 F 到 OO′的距离 b (米)之间满足关系式 h2=-1/800 b3+6b . 已知点 B 到 OO′的距离为 40 米.(1) 求桥 AB 的长度;(2) 计划在谷底两侧建造平行于 OO′的桥墩 CD 和 EF , CE 为 80 米, 其中 C, E 在 AB 上 (不包括端点), 桥墩 EF 每米造价 k (万元), 桥墩 CD 每米造价 3/2 k (万元) (k > 0), 问 O′E为多少米时, 桥墩 CD 与 EF 的总造价最低?

已知关于 x 的函数 y = f(x), y = g(x) 与 h(x) = kx + b (k, b ∈ R) 在区间 D 上恒有 f(x) ⩾ h(x) ⩾ g(x).(1) 若 f(x) = x2 + 2x, g(x) = −x2 + 2x, D = (−∞, +∞), 求 h(x) 的表达式;(2) 若 f(x) = x2 − x + 1, g(x) = k ln x, h(x) = kx − k, D = (0, +∞), 求 k 的取值范围;(3) 若 f(x) = x4−2x2, g(x) = 4x2−8, h(x) = 4(t3−t)x−3t4+2t2 (0 < |t| ⩽), D = [m, n] ⊂ [-, ].求证: n − m ⩽.