问答题(2020年北京市

已知函数 f(x) = 12 − x2.

(I) 求曲线 y = f(x) 的斜率等于 −2 的切线方程;

(II) 设曲线 y = f(x) 在点 (t, f(t)) 处的切线与坐标轴围成的三角形的面积为 S(t), 求 S(t) 的最小值.

答案解析

(I) y = −2x + 13.(II) 在 (t, f(t)) 切线方程为: y = −2tx + t2 + 12.若 t = 0, 则围不成三角形, 切线与坐标轴交点为 A(0, t2 + 12), B((t2+12)/2t, 0).S(t)=1/2 |OA||O...

查看完整答案

讨论

某校为举办甲、乙两项不同活动, 分别设计了相应的活动方案: 方案一、方案二. 为了解该校学生对活动方案是否支持, 对学生进行简单随机抽样, 获得数据如下表:假设所有学生对活动方案是否支持相互独立.(I) 分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(II) 从该校全体男生中随机抽取 2 人, 全体女生中随机抽取 1 人, 估计这 3 人中恰有 2 人支持方案一的概率;(III) 将该校学生支持方案二的概率估计值记为 p0. 假设该校一年级有 500 名男生和 300 名女生, 除一年级外其他年级学生支持方案二的概率估计值记为 p1. 试比较 p0 与 p1 的大小. (结论不要求证明)

在 △ABC 中, a + b = 11, 再从条件 ①、条件 ② 这两个条件中选择一个作为已知, 求:(I) a 的值;(II) sin C 和 △ABC 的面积.条件 ①: c = 7, cos A = -1/7;条件 ②: cos A = 1/8, cos B = 9/16.注: 如果选择条件 ① 和条件 ② 分别解答, 按第一个解答计分.

如图, 在正方体 ABCD − A1B1C1D1 中, E 为 BB1 的中点.(I) 求证: BC1 // 平面 AD1E;(II) 求直线 AA1 与平面 AD1E 所成角的正弦值.

为满足人民对美好生活的向往, 环保部门要求相关企业加强污水治理, 排放未达标的企业要限期整改. 设企业的污水排放量 W 与时间 t 的关系为 W = f(t). 用 -(f(b)-f(a))/(b-a)的大小评价在 [a, b] 这段时间内企业污水治理能力的强弱. 已知整改期内, 甲、乙两企业的污水排放量与时间的关系如下图所示.① 在 [t1, t2] 这段时间内, 甲企业的污水治理能力比乙企业强;② 在 t2 时刻, 甲企业的污水治理能力比乙企业强;③ 在 t3 时刻, 甲、乙两企业的污水排放都已达标;④ 甲企业在 [0, t1], [t1, t2], [t2, t3] 这三段时间中, 在 [0, t1] 的污水治理能力最强.其中所有正确结论的序号是__________.

若函数 f(x) = sin(x + φ) + cosx 的最大值为 2, 则常数 φ 的一个取值为__________.

已知正方形 ABCD 的边长为 2, 点 P 满足 =1/2(+) ,则|| =______ ; · =______ .

已知双曲线 C :x2/6-y2/3=1, 则 C 的右焦点的坐标为_______; C 的焦点到其渐近线的距离是 ______.

函数 f(x) = 1/(x+1)+lnx 的定义域是__________.

2020 年 3 月 14 日是全球首个国际圆周率日 (π Day). 历史上, 求圆周率的方法有多种, 与中国传统数学中 的“割圆术”相似, 数学家阿尔 • 卡西的方法是: 当正整数 n 充分大时, 计算单位圆的内接正 6n 边形的周长和外 切正 6n 边形 (各边均与圆相切的正 6n 边形) 的周长, 将它们的算术平均数作为 2π 的近似值. 按照阿尔 • 卡西的 方法, π 的近似值的表达式是【 】

已知 α, β ∈ R, 则“存在 k ∈ Z 使得 α = kπ + (−1)kβ”是“sin α = sin β”的【 】