单项选择(2024年新高考Ⅰ

设函数f(x)=(x-1)² (x-4),则【 】

A、x=3是f(x)的极小值点

B、当0<x<1时,f(x)<f(x²)

C、当1<x<2时,-4<f(2x-1)<0

D、当-1<x<0时,f(2-x)>f(x)

答案解析

ACD令f' (x)=3(x-1)(x-3)=0,得:x=1或x=3,易知,当x<1或x>3时,f' (x)>0,f(x)单调递增;当1<x<3时,f' (x)<0,f(x)单调递减.故x=3时函数的极小值点,选项A正确;对于选项B,当0<x<1时,有0<x²<x<1,由f(x)的单调性...

查看完整答案

讨论

已知函数f(x)=a(ex+a)-x.(1)讨论f(x)的单调性;(2)证明:当a>0时,f(x)>2lna+3/2.

已知函数f(x)=aex-lnx在区间(1,2)上单调递增,则a的最小值为【 】

设函数f(x)=x-x³eax+b,曲线y=f(x)在点(1,f(1))的切线方程为y=-x+1.(1)求a,b的值;(2)设g(x)=f'(x),求g(x)的单调区间;(3)求f(x)极值点的个数.

证明:当0<x<1时,x-x²<sinx<x.

函数f(x)=|2x-1|-2lnx的最小值为__________.

设a,b为实数,且a>1,函数f(x)=ax-bx+e2 (x∈R)(1)求函数f(x)的单调区间;(2)若对任意b>2e2,函数f(x)有两个不同的零点,求a的取值范围;(3)当a=e时,证明:对任意b>2e4,函数f(x)有两个不同的零点x1,x2,满足:x2>blnb/(2e2 ) x1+e2/b. (注:e=2.71828… 是自然对数的底数)

已知函数f(x)=ln⁡(1+x)+axe-x(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在区间(-1,0),(0,+∞)各恰有一个零点,求a的取值范围.

已知函数f(x)=ax-1/x-(a+1)ln⁡x.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.

已知函数f(x)=ex ln⁡( 1+x).(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设g(x)=f'(x),讨论函数g(x)在[0,+∞)上的单调性;(3)证明:对任意的s,t∈(0,+∞),有f(s+t)>f(s)+f(t).

设函数f(x)=e/2x+ln⁡x (x>0).(1)求f(x)的单调区间;(2)已知a,b∈R,曲线y=f(x)上不同的三点(x1,f(x1 )),(x2,f(x2 )),(x_3,f(x_3 ))处的切线都经过点(a,b).证明:(ⅰ)若a>e,则0<b-f(a)<1/2 (a/e-1);(ⅱ)若0<a<e,x1<x2<x_3,则2/e+(e-a)/(6e2 )<1/x1 +1/x_3 <2/a-(e-a)/(6e2 ).(注:e=2.71828⋯是自然对数的底数)