设函数f(x)=x-x³eax+b,曲线y=f(x)在点(1,f(1))的切线方程为y=-x+1.
(1)求a,b的值;
(2)设g(x)=f'(x),求g(x)的单调区间;
(3)求f(x)极值点的个数.
设函数f(x)=x-x³eax+b,曲线y=f(x)在点(1,f(1))的切线方程为y=-x+1.
(1)求a,b的值;
(2)设g(x)=f'(x),求g(x)的单调区间;
(3)求f(x)极值点的个数.
(1)由f(x)=x-x³ eax+b,x∈R得f' (x)=1-(3x²+ax³ ) eax+b,∵f(x)在(1,f(1))处的切线方程为y=-x+1,∴f(1)=-1+1=0,f' (1)=-1,则,解得;(2)由(1)得g(x)=f' (x)=1-(3x²-x³ ) e-x+1 (x∈R),则g' (x)=-x(x²-6x+6) e-x+1,令x²-6x+6=0,解得x=3±√3,不妨设x1=3-√3,x2=3+√3,则0<x1<x2,易知e-x+1>0恒成立,令g' (x)<0,解得0<x<x1或x>x2;令g' (x)>0,解得x<0或x1<x<x2,所以,g(x)在(0,x1 ),(x2,+∞)上单调递减,在(-∞,0),(x1,x2 )上单调递增,即g(x)的单调递减区间为(0,3-√3)和(3+√3,+∞),单调递增区间为(-∞,0)和(3-√3,3+√3);(3)由(1)得f(x)=x-x³ e-x+1 (x∈R),f'(x)=1-(3x²-x³ ) e-x+1,由(2)知f'(x)在(0,x1 ),(x2,+∞)上单调递减,在(-∞,0),(x1,x2 )上单调递增,①当x<0时,f' (-1)=1-4e²<0,f' (0)=1>0,即f' (-1) f' (0)<0,所以,f' (x)在(-∞,0)上存在唯一零点,不妨设为x3,则-1<x3<0,因此,当x<x3时,f' (x)<0,f(x)单调递减;当x3<x<...
查看完整答案Find the maximum value of (7-x)4 (2+x)6 when x lies between 7 and 2.
Find the maximum value of (5+x)(2+x)/(1-x).
设α=sin2k(π/6) ,函数g:[0,1]→R定义为g(x)=2αx+2α(1-x).下列叙述正确的有【 】
设(a-1)(b-1)>0,a,b,θ皆为实数,求(a+cosθ)(b+cosθ)/(1+cosθ)之极小值.
已知 5x2y2 + y4 = 1 (x, y ∈ R), 则 x2 + y2 的最小值是________.