单项选择(2022年11月韩国

定义在全体实数上的连续函数f(x)满足下列条件:

当n-1≤x<n时,|f(x)|=|6(x-n+1)(x-n)|( n正整数)

定义在开区间(0,4)上的函数g(x)=f(t)dt-f(t)dt.若g(x)在x=2处取得最小值0,则f(x)dx的值为【 】

A、-3/2

B、-1/2

C、1/2

D、3/2

E、5/2

答案解析

暂无答案

讨论

已知函数 f(x) = aex−1 − ln x + ln a.(1) 当 a = e 时, 求曲线 y = f(x) 在点 (1, f(1)) 处的切线与两坐标轴围成的三角形的面积;(2) 若 f(x) ⩾ 1, 求 a 的取值范围.

已知函数 f(x) = 12 − x2.(I) 求曲线 y = f(x) 的斜率等于 −2 的切线方程;(II) 设曲线 y = f(x) 在点 (t, f(t)) 处的切线与坐标轴围成的三角形的面积为 S(t), 求 S(t) 的最小值.

已知函数 f(x)=x3+klnx (k ∈ R) , f′(x) 为 f(x) 的导函数.(I) 当 k = 6 时,(i) 求曲线 y = f(x) 在点 (1, f(1)) 处的切线方程;(ii) 求函数 g(x)=f(x)+f'(x)+9/x 的单调区间和极值;(II) 当 k ⩾ −3 时, 求证: 对任意的 x1, x2 ∈ [1, +∞), 且 x1 > x2, 有f'(x1+x2)/2 > (f(x1 )-f(x2))/(x1-x2 ) .

某地准备在山谷中建一座桥梁, 桥址位置的竖直截面图如图所示: 谷底 O 在水平线 MN 上, 桥 AB 与 MN平行, OO′为铅垂线 (O′在 AB 上), 经测量, 左侧曲线 AO 上任一点 D 到 MN 的距离 h1 (米) 与 D 到 OO′ 的距离 a (米) 之间满足关式 h1=1/40 a2 ; 右侧曲线 BO 上任一点 F 到 MN 的距离 h2 (米) 与 F 到 OO′的距离 b (米)之间满足关系式 h2=-1/800 b3+6b . 已知点 B 到 OO′的距离为 40 米.(1) 求桥 AB 的长度;(2) 计划在谷底两侧建造平行于 OO′的桥墩 CD 和 EF , CE 为 80 米, 其中 C, E 在 AB 上 (不包括端点), 桥墩 EF 每米造价 k (万元), 桥墩 CD 每米造价 3/2 k (万元) (k > 0), 问 O′E为多少米时, 桥墩 CD 与 EF 的总造价最低?

已知关于 x 的函数 y = f(x), y = g(x) 与 h(x) = kx + b (k, b ∈ R) 在区间 D 上恒有 f(x) ⩾ h(x) ⩾ g(x).(1) 若 f(x) = x2 + 2x, g(x) = −x2 + 2x, D = (−∞, +∞), 求 h(x) 的表达式;(2) 若 f(x) = x2 − x + 1, g(x) = k ln x, h(x) = kx − k, D = (0, +∞), 求 k 的取值范围;(3) 若 f(x) = x4−2x2, g(x) = 4x2−8, h(x) = 4(t3−t)x−3t4+2t2 (0 < |t| ⩽), D = [m, n] ⊂ [-, ].求证: n − m ⩽.

求y=cos2 的导数.

如图,已知圆心为O、半径为1的圆与直线l相切于点A,一动点P自切点A沿直线l向右移动时,取弧的长为2/3AP,直线PC与直线AO交于点M.又知当AP=3π/4时,点P的速度为v,求这时点M的速度.

已知曲线y=x3-6x2+11x-6. 在它对应于x∈[0,2]的弧段上求一点P,使得曲线在该点的切线在y轴上的截距为最小,并求出这个最小值.

求y=xarctanx2的导数.

求过点(-1,0)并与曲线y=(x+1)/(x+2)相切的直线方程.