从数字1,2,3,4,5可重复地选出4个,能排列成多少个大于4000的奇数【 】
A、125
B、150
C、175
D、200
E、225
由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有【 】个。
同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有【 】
用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有【 】
四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有______种(用数字作答).
在一块并排10垄的田地中,选择2垄分别种植A、B两种作物, 每种作物种植一垄.为有利于作物生长,要求A、B两种作物的间隔不小于6垄,则不同的选垄方法共有________种(用数字作答).
乒乓球队的10名队员中有3名主力队员,派5名参加比赛.3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有______种(用数字作答).
甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有【 】
如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有______种(以数字作答).
平面上,四条平行直线与另外五条平行直线互相垂直,则它们构成的矩形共有______个(结果用数值表示).
已知甲、乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛人员的组成共有__________种可能(用数字作答).
将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有【 】
4 名同学到 3 个小区参加垃圾分类宣传活动, 每名同学只去 1 个小区, 每个小区至少安排 1 名学生, 则不同的安排方法有______种
从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙电视机各1台,则不同的取法共有【 】种。
已知二项式(x+a)5展开中,x2项的系数为80,则a=__________.
在(2x3+1/x)6的展开式中,x6的系数是__________.
已知多项式(x-1)3+(x+1)4=x4+a1 x3+a2 x2+a3 x+a4,则a1=________,a2+a3+a4=________.
数码a1,a2,a3,⋯,a2006中有奇数个9的2007位十进制数的个数为【 】.
(1-y/x)(x+y)8的展开式中x2y6的系数为________________(用数字作答).
若(2x-1)4=a4 x4+a3 x3+a2 x2+a1 x+a0,则a0+a2+a4=【 】
已知多项式(x+2)(x-1)4=a0+a1 x+a2 x2+a3 x3+a4 x4+a5 x5,则a2=__________,a1+a2+a3+a4+a5=___________.