单项选择(2021年全国甲·理

将4个1和2个0随机排成一行,则2个0不相邻的概率为【 】

A、1/3

B、2/5

C、2/3

D、4/5

答案解析

C

讨论

某学校开设了4门体育类选修课和4门艺术类选修课, 学生需从这8门课中选修2门或3门课, 并且每类选修课至少选修1门, 则不同的选课方案共有 ______种(用数字作答).

4 名同学到 3 个小区参加垃圾分类宣传活动, 每名同学只去 1 个小区, 每个小区至少安排 1 名学生, 则不同的安排方法有______种

6 名同学到甲、乙、丙三个场馆做志愿者, 每名同学只去 1 个场馆, 甲场馆安排 1 名, 乙场馆安排 2 名, 丙场馆安排 3 名, 则不同的安排方法共有【 】

从 6 个人中挑选 4 个人去值班, 每人最多值班一天, 第一天需要 1 个人, 第二天需要 1 个人, 第三天需要 2 个人, 则有 ________ 种排法.

一个小组共有10名同学,其中4名是女同学,6名是男同学. 要从小组内选出3名代表,其中至少1名女同学,一共有多少种选法?

用1,2,3,4,5这五个数字,可以组成比20000大,并且百位数不是数字3的没有重复数字的五位数,共有【 】个。

从集合U={a,b,c,d}的子集中选出4个不同的子集,需同时满足以下两个条件(1) Φ ,U都要选出(2) 对选出的任意两个子集A和B,必有A⊆B或A⊇B.那么,共有_____种不同的选法.

已知集合A和集合B各含有12个元素,A∩B含有4个元素,试求同时满足下面两个条件的集合C的个数:(Ⅰ) C ⊂ A∪B,且C中含有3个元素;(Ⅱ) C∩A≠∅(∅表示空集).

假设在200件产品中有3件是次品,现在从中任意抽取5件,其中至少有2件次品的抽法有【 】种.

由数字1,2,3,4,5组成的没有重复数字的五位数,其中小于50000的偶数共有【 】个

Six persons throw for a stake, which is to be won by the one who first throws head with a coin: if they throw in succession, find the chance of the fourth person.

有四个盒子,Ⅰ号盒子装有8个红球,3个蓝球,5个绿球;Ⅱ号盒子装有24个红球,9个蓝球,15 个绿球;Ⅲ号盒子装有1个蓝球,12个绿球,3个黄球;Ⅳ号盒子装有10个绿球,16个橙球,6个白球.首先从Ⅰ号盒子随机选择一个球,记为b。若b为红球,再从Ⅱ号盒子陆机选择一个球;若b为蓝球,则再从Ⅲ号子随机选择一个球;若b为绿球,则再从Ⅳ号盒子随机选择一个球。在“至少选择了一个绿球”的条件下事件“至少选择了一个白球”的条件概率为【 】

在信道内传输0,1信号,信号的传输相互独立,发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送 1次,三次传输是指每个信号重复发送3次,收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).

甲、乙、丙三位同学进行羽毛球比赛, 约定赛制如下:累计负两场者被淘汰; 比赛前抽签决定首先比赛的两人, 另一人轮空; 每场比赛的胜者与轮空者进行下一场比赛, 负者下一场轮空, 直至有一人被淘汰; 当一人被淘汰后, 剩余的两人继续比赛, 直至其中一人被淘汰, 另一人最终获胜, 比赛结束.经抽签, 甲、乙首先比赛, 丙轮空. 设每场比赛双方获胜的概率都为 1/2.(1) 求甲连胜四场的概率;(2) 求需要进行第五场比赛的概率;(3) 求丙最终获胜的概率.

在新冠肺炎疫情防控期间, 某超市开通网上销售业务, 每天能完成 1200 份订单的配货, 由于订单量大幅增 加, 导致订单积压, 为解决困难, 许多志愿者踊跃报名参加配货工作. 已知该超市某日积压 500 份订单未配货, 预计第二天新订单是 1600 份的概率为 0.05. 志愿者每人每天能完成 50 份订单的配货, 为使第二天积压订单及当日订 单配货的概率不小于 0.95, 则至少需要志愿者【 】

某校为举办甲、乙两项不同活动, 分别设计了相应的活动方案: 方案一、方案二. 为了解该校学生对活动方案是否支持, 对学生进行简单随机抽样, 获得数据如下表:假设所有学生对活动方案是否支持相互独立.(I) 分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(II) 从该校全体男生中随机抽取 2 人, 全体女生中随机抽取 1 人, 估计这 3 人中恰有 2 人支持方案一的概率;(III) 将该校学生支持方案二的概率估计值记为 p0. 假设该校一年级有 500 名男生和 300 名女生, 除一年级外其他年级学生支持方案二的概率估计值记为 p1. 试比较 p0 与 p1 的大小. (结论不要求证明)

将一颗质地均匀的正方体骰子先后抛掷 2 次, 观察向上的点数, 则点数和为 5 的概率是______.

某厂生产电子元件,其产品的次品率为5%,现从一批产品中任意地连续取出2件,其中次数品数ξ的概率分布是ξ 0 1 2p

有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1,2和3.现任取出3面,它们的颜色与号码均不相同的概率是________.

如图,用A,B,C三类不同的元件连接成两个系统N1 N2.当元件A,B,C都正常工作时,系统N1正常工作; 当元件A正常工作且元件B,C至少有一个正常工作; 时,系统N2正常工作.已知元件A,B,C正常工作的概率依次为0.80,0.90,0.90分别求系统N1 N2正常工作的概率P1 P2.