问答题(2022年8月2日东南地区

给定整数m,n≥2.将一个m行n列的方格表S的每个格子染上红、蓝两色之一,使下述条件成立:对于同一行的两个格子,若它们均被染了红色,则它们所属的两列中,一列的所有格子都被染了红色,另一列中有格子被染了蓝色,求不同的染色方式的数目.

答案解析

用(i,j)表示第i行与第j列的交叉格,1≤i≤m,1≤j≤n.分以下三种情况:(1) S中没有一列全为红格.此时,由条件知S的每行至多有一个红格。因此,每行的染色方式有n+1种(全为蓝格的情况1种,恰有一个红格的情况n种),由乘法原理,共得到(n+1)m种染色方式.排除掉其中红格全集中在同一列上的那些情况(n种),共有(n+1)m-n种符合要求的染色方式.(2) S中恰有一列全为红格.设第k列全为红格,其中k∈{1,2,⋯,n}.考虑S中剩余的格子组成的m行n-1列的方格表S(k),则S(k)中没有一列全为红格.与情况(1)类似,可知S(k)的每行至多有一个红格,进而S(k)有nm-(n-1)种...

查看完整答案

讨论

若xi为大于1的整数,记f(xi)为xi的最大素因数.令xi+1=xi-f(xi)(i为自然数).(1)证明:对任意大于1的整数x0,存在自然数k(x0),使得xk(x0)+1=0;(2)令V(x0)为f(x0 ),f(x1 ),⋯,f(xk(x0))中不同的个数,求V(2),V(3),⋯,V(781)中的最大数,并说明理由.

如图所示,在锐角△ABC中,AB>AC,H是垂心,AM是中线,BE⊥AC于点E,CF⊥AB于F.点D在BC边上,满足∠CAD=∠BAM且∠ADH=∠MAH,证明:EF平分线段AD.

设正数数列{an}满足:a1=1+√2且(an-an+1 )(an+an-1-2√n)=2(n≥2).(1)求数列{an}的通项公式;(2)求满足[an ]=2022的所有正整数n构成的集合([x]表示不超过x的最大整数).

已知f(x)=1/2 sin2x,关于该函数的四个说法:①f(x)的最小正周期为2π;②f(x)在[-π/4,π/4]上单调递增;③当x∈[-π/6,π/3]时,f(x)的取值范围为[-√3/4,√3/4];④f(x)的图像可由g(x)=1/2 sin⁡(2x+π/4)向左平移π/8个单位长度得到.正确的个数有【 】个

如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120°,腰为3的等腰三角形,则该几何体的体积为【 】

已知抛物线y2=4√5 x,F1,F2分别是双曲线x2/a-y2/b=1(a>0,b>0)的左右焦点,抛物线的准线过双曲线的左焦点F1,与双曲线的渐近线交于点A,,若∠F1 F2 A=π/4,则双曲线的标准方程是【 】

计算(2log4⁡3+log8⁡3)(log3⁡2+log9⁡2)的值为【 】

已知a=20.7,b=(1/3)0.7,c=log2(1/3),则a,b,c的大小关系为【 】

为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,下图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为【 】

函数f(x)=|x2-1|/x的图像为【 】

正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有________个(用数字作答).

四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有【 】

3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有【 】

某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要, 软件至少买3片,磁盘至少买2盒,则不同的选购方式共有【 】

圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为__________.

某赛季足球比赛的计分规则是:胜一场,的3分;平一场,得1分;负一场,得0分.一球对打完15场,积33分.若不考虑顺序,该队胜、负、平的情况共有【 】

某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需准备不同的素菜品种______种(结果用数值表示).

6 名同学到甲、乙、丙三个场馆做志愿者, 每名同学只去 1 个场馆, 甲场馆安排 1 名, 乙场馆安排 2 名, 丙场馆安排 3 名, 则不同的安排方法共有【 】

从 6 个人中挑选 4 个人去值班, 每人最多值班一天, 第一天需要 1 个人, 第二天需要 1 个人, 第三天需要 2 个人, 则有 ________ 种排法.

一个小组共有10名同学,其中4名是女同学,6名是男同学. 要从小组内选出3名代表,其中至少1名女同学,一共有多少种选法?