给定整数m,n≥2.将一个m行n列的方格表S的每个格子染上红、蓝两色之一,使下述条件成立:对于同一行的两个格子,若它们均被染了红色,则它们所属的两列中,一列的所有格子都被染了红色,另一列中有格子被染了蓝色,求不同的染色方式的数目.
给定整数m,n≥2.将一个m行n列的方格表S的每个格子染上红、蓝两色之一,使下述条件成立:对于同一行的两个格子,若它们均被染了红色,则它们所属的两列中,一列的所有格子都被染了红色,另一列中有格子被染了蓝色,求不同的染色方式的数目.
用(i,j)表示第i行与第j列的交叉格,1≤i≤m,1≤j≤n.分以下三种情况:(1) S中没有一列全为红格.此时,由条件知S的每行至多有一个红格。因此,每行的染色方式有n+1种(全为蓝格的情况1种,恰有一个红格的情况n种),由乘法原理,共得到(n+1)m种染色方式.排除掉其中红格全集中在同一列上的那些情况(n种),共有(n+1)m-n种符合要求的染色方式.(2) S中恰有一列全为红格.设第k列全为红格,其中k∈{1,2,⋯,n}.考虑S中剩余的格子组成的m行n-1列的方格表S(k),则S(k)中没有一列全为红格.与情况(1)类似,可知S(k)的每行至多有一个红格,进而S(k)有nm-(n-1)种...
查看完整答案正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有________个(用数字作答).
四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有【 】
3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有【 】
某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要, 软件至少买3片,磁盘至少买2盒,则不同的选购方式共有【 】
圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为__________.
某赛季足球比赛的计分规则是:胜一场,的3分;平一场,得1分;负一场,得0分.一球对打完15场,积33分.若不考虑顺序,该队胜、负、平的情况共有【 】
6 名同学到甲、乙、丙三个场馆做志愿者, 每名同学只去 1 个场馆, 甲场馆安排 1 名, 乙场馆安排 2 名, 丙场馆安排 3 名, 则不同的安排方法共有【 】
从 6 个人中挑选 4 个人去值班, 每人最多值班一天, 第一天需要 1 个人, 第二天需要 1 个人, 第三天需要 2 个人, 则有 ________ 种排法.
一个小组共有10名同学,其中4名是女同学,6名是男同学. 要从小组内选出3名代表,其中至少1名女同学,一共有多少种选法?
已知的展开式中x3的系数为9/4,常数a的值为________.
(x+2)10 (x2-1)的展开式中x10的系数是________.
若(2x+)4 = a0 + a1x + a2x2 + a3x3 + a4x4,则(a0 + a2 + a4 )2 - (a1 + a3 )2的值为【 】
在二项式(x-1)11的展开式中,系数最小的项的系数为________.(结果用数值表示)
在代数(4x2 - 2x - 5)(1+1/x2)5的展开式中,常数项为______.
已知二项式(x+a)5展开中,x2项的系数为80,则a=__________.
在(2x3+1/x)6的展开式中,x6的系数是__________.
已知多项式(x-1)3+(x+1)4=x4+a1 x3+a2 x2+a3 x+a4,则a1=________,a2+a3+a4=________.