单项选择(1990年全国统考

以一个正方体的顶点为顶点的四面体共有【 】个

A、70

B、64

C、58

D、52

答案解析

C

讨论

用1,2,3,4,5这五个数字,可以组成比20000大,并且百位数不是数字3的没有重复数字的五位数,共有【 】个。

已知集合A和集合B各含有12个元素,A∩B含有4个元素,试求同时满足下面两个条件的集合C的个数:(Ⅰ) C ⊂ A∪B,且C中含有3个元素;(Ⅱ) C∩A≠∅(∅表示空集).

假设在200件产品中有3件是次品,现在从中任意抽取5件,其中至少有2件次品的抽法有【 】种.

由数字1,2,3,4,5组成的没有重复数字的五位数,其中小于50000的偶数共有【 】个

某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要, 软件至少买3片,磁盘至少买2盒,则不同的选购方式共有【 】

将4个1和2个0随机排成一行,则2个0不相邻的概率为【 】

给定整数m,n≥2.将一个m行n列的方格表S的每个格子染上红、蓝两色之一,使下述条件成立:对于同一行的两个格子,若它们均被染了红色,则它们所属的两列中,一列的所有格子都被染了红色,另一列中有格子被染了蓝色,求不同的染色方式的数目.

设一班有学生 40 人中有甲乙二生,今选四人为代表,问:(1).甲乙均被选共有几种方法?(2).甲乙均不被选共有几种方法?

一平面上有 10 点,除其中四点在一直线上外,其余各点无三点共线,问连接各点所成之直线共有若干条?

某学校开设了4门体育类选修课和4门艺术类选修课, 学生需从这8门课中选修2门或3门课, 并且每类选修课至少选修1门, 则不同的选课方案共有 ______种(用数字作答).

如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有______种(以数字作答).

快递员收到 3 个同城快递任务,取送地点各不相同,取送件可穿插进行,不同的取送方式有【 】种。

有四个箱子,每个箱子装有3个红球利2个蓝球,且这20个球都是不同的。从这4个盒子中选出10个球,要求每个盒子至少选择一个红球和一个蓝球,则选择的方法共有多少种?

有 0,1,2,3,4,5,6,7 八个数字,可组成小于 10000 之数字有几?

Let n be a positive integer. Initially, a bishop is placed in each square of the top row of a 2n×2n chessboard; those bishops are numbered from 1 to 2n ,from left to right. A jump is a simultaneous move made by all bishops such that the following conditions are satisfied:each bishop moves diagonally, in a straight line, some number of squares, andat the end of the jump, the bishops all stand in different squares of the same row.Find the total number of permutations σ of the numbers 1,2,⋯,2n with the following property: There exists a sequence of jumps such that all bishops end up on the bottom row arranged in the order σ(1),σ(2),⋯,σ(2n ), from left to right.【译】设n是正整数.最开始在一个2n×2n的方格棋盘上的第一行的每个小方格内均放置一枚“象”,这些“象”从左到右依次编号:1,2,⋯,2n.定义一次“跳跃”操作为同时移动所有的“象”并满足如下条件:每一枚“象”可沿对角线方向移动任意方格;在这次“跳跃”操作结束时,所有的“象”恰在同一行的不同方格.求满足下列条件的数1,2,⋯,2n的排列σ的总个数:存在一系列的“跳跃”操作,使得结束时所有的“象”都在棋盘的最后一行,并且从左到右编号依次为:σ(1),σ(2),⋯,σ(2n ).

设 A 是一个三阶方阵,其元素为 1,2,…,9,且满足每行元素从左到右递增,每列元素从上到下递增,则满足条件的 A 有______个.

要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相信,问:有多少种不同的排法?(只要写出式子,不必计算)

求(2x3-1/x2 )5展开式中的常数项.

若(1+x)n的展开式中,x3的系数等于x的系数的7倍,求n.

由数字1,2,3,4,5组成没有重复数字且数字1与2不相邻的五位数,求这种五位数的个数.