A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有【 】种.
A、24
B、60
C、90
D、120
已知h>0.设命题甲为:两个实数a,b满足|a-b|<2h;命题乙为:两个实数a,b满足|a-1|<h且|b-1|<h.那么【 】
如图,正三棱锥S-ABC的侧棱与底面边长相等,如果E,F分别为SC,AB的中点,那么异面直线EF与SA所成的角等于【 】
如果实数x,y满足等式(x-2)2+y2=3,那么y/x的最大值是【 】
设全集I={(x,y)|x,y∈R},集合M={(x,y)│(y-3)/(x-2)=1},N={(x,y)|y≠x+1},那么等于【 】
如果直线y=ax+2与直线y=3x-b关于关于直线y=x对称,那么【 】
函数y=sinx/|sinx|+|cosx|/cosx+tanx/|tanx|+|cotx|/cotx的值域是【 】
如图是函数y=2sin(ωx+φ)(|φ|<π/2)的图像,那么【 】
如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有______种(以数字作答).
快递员收到 3 个同城快递任务,取送地点各不相同,取送件可穿插进行,不同的取送方式有【 】种。
有四个箱子,每个箱子装有3个红球利2个蓝球,且这20个球都是不同的。从这4个盒子中选出10个球,要求每个盒子至少选择一个红球和一个蓝球,则选择的方法共有多少种?
有 0,1,2,3,4,5,6,7 八个数字,可组成小于 10000 之数字有几?
设 A 是一个三阶方阵,其元素为 1,2,…,9,且满足每行元素从左到右递增,每列元素从上到下递增,则满足条件的 A 有______个.
在 A , B , C , D 四位候选人中:1.如果选举正、副班长各一人,共有几种选法?写出所有可能的选举结果.2.如果选举班委三人,共有几种选法?写出所有可能的选举结果.