已知{an}和{bn}是两个等差数列,且ak/bk (1≤k≤5)是常值,若a1=288,a5=96,b1=192,则b3的值为【 】
A、64
B、100
C、128
D、132
已知{an}和{bn}是两个等差数列,且ak/bk (1≤k≤5)是常值,若a1=288,a5=96,b1=192,则b3的值为【 】
A、64
B、100
C、128
D、132
C
设{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是【 】
设{an}为等差数列,bn=,记Sn,Tn分别为{an },{bn}的前n项和,S4=32,T3=16.(1)求{an}的通项公式(2)证明:当n>5时,Tn>Sn.
记 Sn 为等差数列 {an} 的前 n 项和, 若 a1 = −2, a2 + a6 = 2, 则 S10 = ______.
在等差数列 {an} 中, a1 = −9, a5 = −1. 记 Tn = a1a2 · · · an (n = 1, 2, · · · ), 则数列 {Tn}【 】
已知数列 {an} 为不为零的等差数列, 且 a1 + a10 = a9, 则 (a1+a2+⋯+a9)/a10 =__________ .
已知等差数列 {an} 的前 n 项和为 Sn, 公差 d≠ 0, a1/d ⩽ 1. 记 b1 = S2, bn+1 = Sn+2 − S2n, n ∈ N∗, 下列不可能成立的是【 】
我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题, 如数列 {n(n+1)/2} 就是二阶等差数列,数列{n(n+1)/2} (n ∈ N∗) 的前 3 项和是________.