单项选择(2022年浙江省

为了得到函数y=2sin⁡3x的图像,只要把函数y=2sin⁡(3x+π/5)图像上所有的点【 】

A、向左平移π/5个单位长度

B、向右平移π/5个单位长度

C、向左平移π/15 个单位长度

D、向右平移π/15个单位长度

答案解析

D

【解析】

因为y=2sin⁡3x=2sin⁡[3(x-π/15)+π/5],所以把函数y=2sin⁡(3x+π/5)图像上的所有点向右平移π/15个单位长度即可得到函数y=2sin⁡3x的图像.

讨论

某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是【 】

设x∈R,则“sin⁡x=1”是“cos⁡x=0”的【 】

若实数x,y满足约束条件,则z=3x+4y的最大值是【 】

已知a,b∈R,a+3i=(b+i)i(i为虚数单位),则【 】

设集合A={1,2},B={2,4,6},则A∪B=【 】

已知Q:a1,a2,⋯,ak为有穷整数数列.给定正整数m,若对任意的n∈{1,2,⋯,m},在Q中存在ai,ai+1,ai+2,⋯,ai+j (j≥0),使得ai+ai+1+ai+2+⋯+ai+j=n,则称Q为m-连续可表数列.(1)判断Q:2,1,4是否为5-连续可表数列?是否为6-连续可表数列?说明理由;(2)若Q:a1,a2,⋯,ak为8-连续可表数列,求证:k的最小值为4;(3)若Q:a1,a2,⋯,ak为20-连续可表数列,且a1+a2+⋯+ak<20,求证:k≥7.

已知函数f(x)=ex ln⁡( 1+x).(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设g(x)=f'(x),讨论函数g(x)在[0,+∞)上的单调性;(3)证明:对任意的s,t∈(0,+∞),有f(s+t)>f(s)+f(t).

已知椭圆: E:x2/a2 +y2/b2 =1(a>b>0)的一个顶点为A(0,1),焦距为2√3.(1)求椭圆E的方程;(2)过点P(-2,1)作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N,当|MN|=2时,求k的值.

在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m以上(含9.50m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)

如图,在三棱柱ABC-A1B1C1中,侧面BCC1B1为正方形,平面BCC1B1⊥平面ABB1A1,AB=BC=2,M,N分别为A1B1,AC的中点.(1)求证:MN∥平面BCC1B1;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.条件①:AB⊥MN;条件②:BM=MN.注:如果选择条件①和条件②分别解答,按第一个解答计分.