填空题(1982年全国统考

函数y=sin(arcsinx)中,x的取值范围是__________.

答案解析

-1≤x≤1

讨论

如图是函数 y = sin(ωx +φ) 的部分图像, 则 sin(ωx +φ) =【 】

2020 年 3 月 14 日是全球首个国际圆周率日 (π Day). 历史上, 求圆周率的方法有多种, 与中国传统数学中 的“割圆术”相似, 数学家阿尔 • 卡西的方法是: 当正整数 n 充分大时, 计算单位圆的内接正 6n 边形的周长和外 切正 6n 边形 (各边均与圆相切的正 6n 边形) 的周长, 将它们的算术平均数作为 2π 的近似值. 按照阿尔 • 卡西的 方法, π 的近似值的表达式是【 】

若函数 f(x) = sin(x + φ) + cosx 的最大值为 2, 则常数 φ 的一个取值为__________.

已知函数 f(x)=sin⁡(x+π/3). 给出下列结论:① f(x) 的最小正周期为 2π;② f(π/2) 是 f(x) 的最大值;③ 把函数 y = sin x 的图像上所有点向左平移 π/3个单位长度, 可得到函数 y = f(x) 的图像.其中所有正确结论的序号是【 】.

已知 f(x) = sinωx, ω> 0.(1) T = 4π, 求ω及f(x)=1/2时的解集;(2) ω = 1, g(x)=[f(x)]2-f(-x)f(π/2-x), 求 x∈[0,π/4] 时 g(x) 的值域.

不查表,求 cos80°cos35°+ cos10°cos55°的值.

设三角函数f(x)=sin⁡(kx/5+π/3),其中k≠0.(Ⅰ) 写出f(x)的极大值M 、极小值 m 与最小正周期T; (Ⅱ) 试求最小的正整数k,使得当自变量 x 在任意两个整数间(包括整数本身)变化时,函数f(x)至少有一个值是 M 与一个值是 m .

已知函数f(x)=tanx,x∈(0,π/2).若x1,x2∈(0,π/2),且x1≠x2,证明1/2 [f(x1)+f(x2)]>f((x1+x2)/2).

已知θ是第三象限角,且sin4θ + cos4θ = 5/9,那么sin2θ等于【 】

函数y=sin(x - π/6)cosx的最小值是________.