单项选择(2022年新高考Ⅱ

正三棱台高为1,上下底边长分别为3√3和4√3,所有顶点在同一球面上,则球的表面积是【 】

A、100π

B、128π

C、144π

D、192π

答案解析

A设正三棱台上下底面所在圆面的半径r1,r2,所以2r1=3√3/sin⁡60°,2r2=4√3/sin⁡60°,即r1=3,r2=4,设球心到上下底面的距离分别为d1,d2,球的半径为R,所以d1=...

查看完整答案

讨论

在球面上有四个点P,A,B,C,如果PA,PB,PC两两互相垂直,且PA=PB=PC=a.那么这个球面的面积是________.

体积相等的正方体、球、等边圆柱(即底面直径与母线 相等的圆柱)的全面积分别为S1,S2,S3,那么它们的 大小关系为【 】

已知过球面上A,B,C三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面面积是【 】

正方体的全面积是a2,它的顶点都在球面上,这个球的表面积是【 】

底面半径为1cm的圆柱形容器里放有四个半径为1/2 cm的实心铁球,四个球两两相切,其中底层两个球与容器底面相切。现往容器里注水,使水面恰好浸没所有铁球,则需要注水________________cm3.

已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC = AC = OO1,则球 O 的表面积为【 】

已知直四棱柱 ABCD − A1B1C1D1 的棱长均为 2, ∠BAD = 60◦. 以 D1 为球心, 为半径的球面与侧面 BCC1B1 的交线长为__________.

已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且相距为1,那么这个球的半径是【 】

已知圆台上、下底面圆周都在球面上,且下底面过球心,母线与底面所成的角为π/3,则圆台的体积与球的体积之比为__________.

长方体一个顶点上三条棱的长分别是3,4,5,且它的八个顶点都在同一个球面上,这个球的表面积是【 】

已知正六棱台的上、下底面边长分别为2和4,高为2,则其体积为【 】

工人师傅要用铁皮做一个上大下小的正四棱台形容器(上面开口),使其容积为208立方分米,高为4分米,上口边长与下底面边长的比为5:2,做这样的容器需要多少平方分米的铁皮?(不计容器的厚度和加工余量,不要求写出已知、求解,直接求解并画图即可)

在正四棱台ABCD-A1B1C1D1中,AB=2,A1B1=1,AA1=√2,则该棱台的体积为______.

南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m时,相应水面的面积为140.0km2;水位为海拔157.5m时,相应水面的面积为180km2.将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m上升到157.5m时,增加的水量约为(√7≈2.65)【 】

底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为______.

执行如图的程序框图, 若输入 k = 0, a = 0, 则输出的 k 为【 】

已知 C1, C2 的参数方程分别为 C1 :(θ为参数), C2 : (t 为参数) ,(1) 将 C1, C2 的参数方程化为普通方程;(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 设 C1, C2 的交点为 P , 求圆心在极轴上, 且经过极点和 P 的圆的极坐标方程.

若 x, y 满足约束条件 , 则 z = x + 2y 的最大值是__________.

如图是一个多面体的三视图, 这个多面体某条棱的一个端点在正视图中对应的点为 M, 在俯视图中对应的 点为 N, 则该端点在侧视图中对应的点为【 】

若 2x − 2y < 3−x − 3−y, 则【 】