正方体的全面积是a2,它的顶点都在球面上,这个球的表面积是【 】
A、πa2/3
B、πa2/2
C、2πa2
D、3πa2
已知直四棱柱 ABCD − A1B1C1D1 的棱长均为 2, ∠BAD = 60◦. 以 D1 为球心, 为半径的球面与侧面 BCC1B1 的交线长为__________.
若棱长为 2 的正方体的顶点都在同一球面上, 则该球的表面积为【 】
已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且相距为1,那么这个球的半径是【 】
在球面上有四个点P,A,B,C,如果PA,PB,PC两两互相垂直,且PA=PB=PC=a.那么这个球面的面积是________.
体积相等的正方体、球、等边圆柱(即底面直径与母线 相等的圆柱)的全面积分别为S1,S2,S3,那么它们的 大小关系为【 】
已知过球面上A,B,C三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面面积是【 】
已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为【 】
一个四面体的所有棱长都为√2,四个顶点在同一球面上,则此球的表面积为【 】
已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC =AC = OO1,则球 O 的表面积为 【 】
已知 A, B, C 为球 O 的球面上的三个点, ⊙O1 为 △ABC 的外接圆. 若 ⊙O1 的面积为 4π, AB = BC = AC = OO1,则球 O 的表面积为【 】
如图,长方体ABCD-A1 B1 C1 D1中,已知AB=BC=2,AA1=3. (1)若P是A1 D1上的动点,求三棱锥C-PAD的体积;(2)求直线AB1与平面ACC1 A1的夹角大小.
如果正方体ABCD-A′B′C′D′的棱长为a,则A′-ABD的体积是【 】
下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有【 】
由正方体ABCD-A1B1C1D1的顶点A作该正方体的对角线A1C的垂线,垂足为E,证明A1E:EC=1:2.
如图,已知长方体的对角线长为l,它与底面所成的角为α,底面两条对角线的夹角为β.求长方体的积体.
在长方体ABCD-A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B所成的角均为30°,则【 】