填空题(1990年上海市

已知圆锥的中截面周长为a,母线长为l,则它的侧面积等于______.

参考答案

关键词

圆锥;数学;立体几何;面积;截面;周长;母线;线长;侧面;

设复数ω = cos(2π/5) + isin(2π/5),则ω + ω2 + ω3 + ω4 + ω5的值是________.

在△ABC中,已知cosA=-3/5,则sin(A/2)=______.

已知圆柱的轴截面是正方形,它的面积是4cm2,那么这个圆柱的体积是__________cm3 (结果中保留π).

过点(1,2)且与直线2x + y - 1 = 0平行的直线方程是__________.

函数y=arcsinx(x∈[-1,1])的反函数是__________.

函数y=/(x+2)的定义域是____________.

已知椭圆Γ的方程x2/a2 +y2/b2 =1(a>b>0),点P的坐标为 (-a,b).(1) 若直角坐标平面上的点 M,A(0,-b),B(a,0)满足=1/2(+),求点M的坐标;(2) 设直线l1:y=k1 x+p交椭圆Γ于C,D两点,交直线l2:y=k2 x 交于点E,若k1•k2=-b2/a2 ,证明:E为CD的中点;(3) 对于椭圆Γ上的点Q(acos⁡θ,bsin θ)(0<θ<π),如果椭圆Γ上存在不同的两点P1, P2,使得+=,写出求作点P1,P2的步骤,并求出使P1, P2存在的θ的取值范围.

若实数x,y,m满足|x- m|>|y- m|,则称x比y远离m.(1) 若x2-1比1远离0,求x的取值范围;(2) 对于任意两个不相等的正数a,b.证明:a3+b3比a2b+ab2 远离 2ab;(3) 已知函数f(x) 的定义域 D={x|x≠kπ/2+π/4,k∈Z,x∈R}. 任取x∈D,f(x)等于sinx和 cosx中远离0的那个值,写出函数f(x)的解析式,并指出它的基本性质(结论不要求证明).

如图所示,为了制作一个圆柱形灯笼,先要制作4 个全等的矩形骨架,总计耗用9.6 米铁丝。 骨架将到柱底面8 等分,再用S 平方米塑輯片制成圆柱的侧面和下底面(不安装上底面).(Ⅰ) 当圆柱底面半径r 为何值时, S 取得最大值? 并求出该最大值(结果精确到0.01 平方米);(Ⅱ) 在灯笼内,以矩形骨架的頂点为端点, 安装一些霓虹灯,当灯笼底面半径为0.3 米时,求图中两根直线型霓虹灯A1B3,A3B5所在异面直线所成角的大小(结果用反三角函数值表示).

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*.(Ⅰ)证明:{an - 1} 是等比数列;(Ⅱ)求数列{Sn}的通项公式。请指出n为何值时,Sn取得最小值,并说明理由.

设P是一个凸多面体,满足以下两个性质:(i) P的每一个顶点恰属于 3 个不同的面;(ii) 对任意 k ≥3, P 中 k 边形面都恰有偶数个。有一只蚂蚁从某条棱的中点出发,沿棱爬行,走一条闭合路径 L ,经过 L 上每一点恰好一次,最终回到出发点。 L 将 P 的表面分为两部分,使得对任意的 k ≥3,两部分中 k 边形面的个数相等。求证:蚂蚁在爬行中向左转和向右转的次数相等。

如图,三棱柱ABC-A1B1C1中,若E,F分别为AB,AC的中点,平面EB1C1F将三棱柱分成体积为V1,V2的两部分,那么V1:V2=__________.

如图,正三棱锥S-ABC的侧棱与底面边长相等,如果E,F分别为SC,AB的中点,那么异面直线EF与SA所成的角等于【 】

如果轴截面为正方形的圆柱的侧面积是S,那么圆柱的体积等于【 】

如图,在平行六面体ABCD-A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=π/3. (Ⅰ)求证:顶点A1在底面ABCD的射影O在∠BAD的平分线上;(Ⅱ)求这个平行六面体的体积.

已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且相距为1,那么这个球的半径是【 】

如果圆锥的底面半径为,高为2,那么它的侧面积是【 】

如图,正三棱锥S-ABC的侧面是边长为a的正三角形,D是SA的中点,E是BC的中点,求△SDE绕直线SE旋转一周所得到的旋转体的体积.

如图,三棱锥P-ABC中,已知PA⊥BC,PA=BC=l,,PA,BC的公垂线,ED=h.求证:三棱锥P-ABC的体积V=l2h/6.

一个正三棱台的下底和上底的周长分别为30cm和12cm,且侧面积等于两底面积之差,求斜高.