如图所示,O是△ABC的内心,∠BOC=100°,则∠BAC=______度.
从半圆之直径 AB 两端各引此半圆弦 AC,BD交于 E,求证: AC·AE+BD·BE = AB².
两圆外切,其半径各为R和r,设两圆之外公切线之交角为θ,试证 sinθ=.
A,B,C 为三定点,求作一圆过 A,B,使从 C 到此圆的切线等于定长.
已知PA,PB,PC为过圆周上点P三弦,PT为圆之切线,设有一直线与PT平行,交PA,PB,PC于A',B',C'三点.求证:PA∙PA'=PB∙PB'=PC∙PC'.
设 △ABC 是一个圆的内接三角形,过 A 作切线交于 BC 的延长线于 D.证明 △ABD,△ACD 的外接圆直径的比等于 AD:CD.
自 △ABC 的顶点 A 至对边作垂线,自垂足 D 作 AB、AC 过之垂线,其垂足为 E、F,证明 B,E,F,C 共圆.
设O为圆心,AB为弦,延长AB至C,令BC等于圆半径,再引CO交圆于D,求证:∠BOC为∠DOA的1/3.
于任意 △ABC 之各边上向外作等边三角形 BCD,CAE 及 ABF,试证此诸等边三角形的外接圆共点.若此点为 P,则 PA+PB + PC =AD =BE =CF.
三角形内任意一点至三顶点 A,B,C 的延长线交对边于 P,Q,R,则BP/CP×CQ/AQ×AR/BR=1.
某城街路为棋盘式,走向南北者有 a 条,而走向东西者有 6 条,一行人欲由西北隅向最短之路走到东南隅,问计共有若干方法?
设 D 为 △ABC 之底边 BC 之中点,若顶角 A 为角直角或锐角,则底边BC 分别大于,等于或小于中线 AD 之二倍.试证之.
设 ABC 为一直角三角形,A 为直角,A 之平分线与 BC 交于 D,与此三角形之外接圆交于 B.求证: △ABC 之面积 =1/2 AD×AE.
三角形ABC中,自A、B两点各作对边垂线,垂足为D、E,设M、N为DE及AB之两中点,证明MN⊥DE.
三角形ABC中,其边为a,b,c,内接圆半径为r,试证:a+b+c=2r(cot(A/2)+cot(B/2)+cot(C/2))