已知底边顶角及底边上之高,求作一三角形.
为了测湖岸边A、B两点的距离,选择一点C,测得CA=50米,CB=30米,∠ACB=120°,求AB.
已知D为△ABC内的一点,AB=AC=1,∠BAC=63°,∠BAD=33°,∠ABD=27°,求DC(精确到小数点后两位,sin27°=0.4540).
直角三角形之斜边上所画之正三角形之面积,等于其余两边上所画之正三角形之面积之和.
试证同底之三角形且在同平行线内其面积相等,又证明如何作一三角形令其面积等于已知之四边形.
如图,在三角形ABC中∠BAC=60°,BD平分∠ABC,交AC于D,CE平分∠ACB交AB于E,BD和CE交于F,则∠EFB=【 】
设 AD 为 ∠ABC 之中线;∠ADB 之平分线交 AB 于E,∠ADC 之平分线交AC 于F,试证 EF// BC.
何谓圆:___________________________.
设G为半径为R的圆,G1,G2,⋯,Gn为半径为r的圆,已知G1,G2,⋯,Gn均外切于G,对于i=1,2,⋯,n-1,Gi与Gi+1外切,且Gn与G1外切,则下列叙述正确的有【 】
从半圆之直径 AB 两端各引此半圆弦 AC,BD交于 E,求证: AC·AE+BD·BE = AB².
两圆外切,其半径各为R和r,设两圆之外公切线之交角为θ,试证 sinθ=.
于圆内接四边形内,若两对角线成垂直,求证对角线交点与一边中点之距离等于自圆心至对边之距离.
证明:对于一组共轴圆 (co-axial circles) 一定点之诸极线 (polars) 必通过一定点,且一定直线之诸极 (poles) 必在一直线上.