证明题(1933年齐鲁大学

试证同底之三角形且在同平行线内其面积相等,又证明如何作一三角形令其面积等于已知之四边形.

答案解析

暂无答案

讨论

设D是锐角三角形ABC(AB>AC)内部一点,使得∠DAB=∠CAD.线段AC上的点E满足∠ADE=∠BCD,线段AB上的点F满足∠FDA=∠DBC,且直线AC上的点X满足CX=BX.设O1和O2分别为三角形ADC和三角形EXD的外心.证明:直线BC,EF和O1O2共点.

我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为S1,小正方形的面积为S2,则S1/S2 =___________.

从山顶D测得地面上同一方向的两点A和B的俯角分别是30°和45°,已知AB=40米,求山高(精确到0.1)

一只船以20海里/小时的速度向正东航行,起初船在A处看见一灯塔B在船的北45°东方向,一小时后船在C处看见这个灯塔在船的北15°东方向,求这时船和灯塔的距离CB.

证明:等腰三角形两腰上的高相等.

为了测湖岸边A、B两点的距离,选择一点C,测得CA=50米,CB=30米,∠ACB=120°,求AB.

已知D为△ABC内的一点,AB=AC=1,∠BAC=63°,∠BAD=33°,∠ABD=27°,求DC(精确到小数点后两位,sin27°=0.4540).

如图所示,在锐角△ABC中,AB>AC,H是垂心,AM是中线,BE⊥AC于点E,CF⊥AB于F.点D在BC边上,满足∠CAD=∠BAM且∠ADH=∠MAH,证明:EF平分线段AD.

自等边三角形底边上任意一点,引他二边之平行线,所得平行四边形之周围有一定之长.

直角三角形之斜边上所画之正三角形之面积,等于其余两边上所画之正三角形之面积之和.

Suppose a convex pentagon ABCDE such that BC=DE.If there exists a point T inside ABCDE suchthat TB=TD TC=TE and ∠ABT=∠TEA. AB meet CD and CT at point P and Q respectively, withP,B,A,Q in this order on the same line. AE meet CD and DT at point R and S respectively, with R,E,A,S in this order on the same line.Prove that P,S,Q,R are on the same circle.译文:设凸五边形ABCDE满足BC=DE.若在ABCDE内存在一点T使得TB=TD,TC=TE且∠ABT= ∠TEA.直线AB分别与直线CD和CT交于点P和Q,且P,B,A,Q在同一直线上按此顺序排列;直线AE分别与直线CD和DT交于点R和S,且R,E,A,S在同一直线上按此顺序排列.证明:P,S,Q,R 四点共圆.

Let n be a positive integer. A“Northern European Square Matrix (NESM) is an n×n square containing all the integers from 1 to n²,so that there is exactly one number in each grid.The two different grids are neighbours if they share a common edge.A grid is called a "valley”if the integer in it in smaller than the integers in all the neighbours of the grid. An "uphill path”is a sequence containing one or more grids satisfying:(i)the frist grid of the sequence is a valley,(ii) each subsequent grid in the sequence is the neighbour of its previous grid,(iii) the integers in the girds of the sequence is incremented.Figure out the minimum possible value of the number of uphill paths in a NESM which should be represented by a function of n.译文:令n为一个正整数,一个“北欧方阵”是一个包含1至n²所有整数的n×n的方格表,使得每个方格中恰有一个数字。两个相异方格如果有公共边,称它们是相邻的。如果一个方格内的数字比所有相邻方格内的数字都小,称其为“山谷”。一条“上坡路径”是一个包含一或多个方格的序列,满足:(1)序列的第一个方格是山谷;(2)序列中随后的每个方格都和前一个方格相邻;(3)序列中方格所写的数字递增。试求一个北欧方阵中山坡路径的最小可能值,以n的函数表示之。

如图所示,在△ABC中,H是垂心.以H为圆心,过点A的圆与边AC,AB分别相交于不同于A的另外两点D,E.△ADE的垂心是H',AH'的延长线与DE相交于点F.点P在四边形BCDE内部,满足△PDE∽△PBC(顶点按对应顺序排列).设直线HH',PF相交于点K,证明:A,H,P,K四点共圆.

小陶同学玩如下游戏:取定大于1的常数v;对正整数m,第m轮与第m+1轮间隔为2-m单位时长;其中第m轮是在平面上取一个半径为2-m+1的圆形安全区域(含边界,取圆时间忽略不计);取定后,该圆形安全区域将在整个游戏剩余时间内保持圆心不动,半径以速率v匀速减小,直至半径为零时,去掉该圆形安全区域.若小陶可在第100轮之前(含第100轮)的某轮将圆形安全区域完全取在已有的安全区域内,求[1/(v-1)]的最小值([x]表示不超过x的最大整数).

如图所示,四边形ABCD内接于圆,(AB) ̅=5,(AC) ̅=3√5,(AD) ̅=7,∠BAC=∠CAD,则圆的半径为【 】

在△ABC中,AB=1,AC=3,∠BAC=π/2,半径为r>0的圆与边AB,AC相切,且也内切于△ABC的外接圆,则r的值为__________.

设两弦于圆内相交,其两线分之积,彼此相等,试证明之.

圆内各等弦中点之轨迹为一同心圆周,试证之.

设由圆外一点作一切线一割线,证明此切线为割线及其圆外线分的比例中率.

设一圆之半径为 25 尺,其外切四边形之圆界为 400 尺,试求此四边形之面积。