证明题(1947年北京大学1947年清华大学1947年南开大学

设 D 为 △ABC 之底边 BC 之中点,若顶角 A 为角直角或锐角,则底边BC 分别大于,等于或小于中线 AD 之二倍.试证之.

答案解析

暂无答案

讨论

Let n be a positive integer. A“Northern European Square Matrix (NESM) is an n×n square containing all the integers from 1 to n²,so that there is exactly one number in each grid.The two different grids are neighbours if they share a common edge.A grid is called a "valley”if the integer in it in smaller than the integers in all the neighbours of the grid. An "uphill path”is a sequence containing one or more grids satisfying:(i)the frist grid of the sequence is a valley,(ii) each subsequent grid in the sequence is the neighbour of its previous grid,(iii) the integers in the girds of the sequence is incremented.Figure out the minimum possible value of the number of uphill paths in a NESM which should be represented by a function of n.译文:令n为一个正整数,一个“北欧方阵”是一个包含1至n²所有整数的n×n的方格表,使得每个方格中恰有一个数字。两个相异方格如果有公共边,称它们是相邻的。如果一个方格内的数字比所有相邻方格内的数字都小,称其为“山谷”。一条“上坡路径”是一个包含一或多个方格的序列,满足:(1)序列的第一个方格是山谷;(2)序列中随后的每个方格都和前一个方格相邻;(3)序列中方格所写的数字递增。试求一个北欧方阵中山坡路径的最小可能值,以n的函数表示之。

三角形二边之和大于其他一边.

试证三角形之三中线相会于一点.

Homologous sides of two similar polygons have the ratio of 5 to 9 , the sum of the areas is 212 sq. ft. Find the area of each figure.

Twos tations,A and B on opposite side of a mountain, are both visible from a third station C. The distance AC=3m.CB=5m and the angle ACB=60°. Find the distance between A and B.

直角三角形之斜边上所画之正三角形之面积,等于其余两边上所画之正三角形之面积之和.

Two straight roads intersect at an angle of 30°. If two automobiles start at the same time at the junction, one at the rate of 60 miles an hour and the other atthe rate of 40 miles an hour, how far apart will they be in 15 minutes?

一定点 D在 AB 及 AC 两直线间,求作过 D至 AB、AC 两线之直线,并 D为所作线之三等分点之一点,并证有二此等线.

试证圆内之等弦距圆心均等.又证圆内之两等弦相交割其所割相当之部分各相等.

n 多边形诸角之和=______.