设 D 为 △ABC 之底边 BC 之中点,若顶角 A 为角直角或锐角,则底边BC 分别大于,等于或小于中线 AD 之二倍.试证之.
如图所示,在锐角△ABC中,AB>AC,H是垂心,AM是中线,BE⊥AC于点E,CF⊥AB于F.点D在BC边上,满足∠CAD=∠BAM且∠ADH=∠MAH,证明:EF平分线段AD.
自等边三角形底边上任意一点,引他二边之平行线,所得平行四边形之周围有一定之长.
由直角三角形之直角顶,作其对边之垂线,求证此垂线之平方等于其所分底线两段之积.
设一三角形之底边为 600 尺,其二底角一为 30°,一为 120°,试求其他二边及其高为若干尺。
有 Rt△ABC(C为直角),以A为圆心,斜边之长为直径作圆,割 AC 于点 D及 AB 于点 O, 自 D 引与 AO 正交之弦 DE,证 △ADE 与 △OCB 全等.