已知两个圆:x2+y2=1①与x2+(y-3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为________________________________.
已知两个圆:x2+y2=1①与x2+(y-3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为________________________________.
圆(x-a)2+(y-b)2=r2与圆(x-c)2+(y-d)2=r2相减得方程为两圆对称轴方程
过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是【 】
设点M在直线2x+y-1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M的方程为______________.
已知平面直角坐标系中的点集Q={(x,y)|(x-k)2+(y-k2)2=4|k,k∈z}.①存在直线l与Q没有公共点,且Q中存在两点在l的两侧;②存在直线l经过Q中的无数个点则【 】
已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0.当直线l被C截得的弦长为2√3时,a=【 】
关于直交轴有三直线: x=0,y=0,x/a+y/b=1.求与此三直线相切之圆之方程式.
求过直线 2x -y+4 =0 与圆 x² +y² + 2x -4y +1 = 0之二交点并点(1,1)之圆之方程式.
设圆 x² +y² = a²交横轴于 A、B 二点,自圆上任意一点 Q 作切线,自 A 作直线垂直于切线与 BQ 交于 P,求 P之轨迹.
求原点平移至(2,-5)后,曲线7x²+8y²-28x+80y+172=0之方程式.
函数f(x)和g(x)的定义域均为R,“f(x),g(x)都是奇函数”是“f(x)与g(x)的积是偶函数”的【 】
设甲、乙、丙是三个命题.如果甲是乙的必要条件;丙是乙的充分条件但不是乙的必要条件,那么【 】
两条直线A1 x+B1 y+C1=0,A2 x+B2 y+C2=0垂直的充要条件是【 】
若xy≠0,则“x+y=0”是“y/x+x/y=-2”的【 】
设 a, b 为单位向量, 且 |a + b| = 1, 则 |a − b| =__________.
已知 α, β ∈ R, 则“存在 k ∈ Z 使得 α = kπ + (−1)kβ”是“sin α = sin β”的【 】