填空题(1997年全国统考

已知m,l是直线,α,β是平面,给出下列命题:

①若l垂直于α内的两条相交直线,则l⊥α;

②若l平行于α,则l平行于α内的所有直线;

③若m⊂α,l⊂β,且l⊥m,则α⊥β;

④若l⊂β,且l⊥α,则α⊥β;

⑤若m⊂α,l⊂β,且a//β,则m//l.

其中正确的命题是序号是 ________(注:把你认为正确的命题的序号都填上)

答案解析

①④

讨论

入冬以来,天气渐渐寒冷。11 月 30 日,某地气象台对未来 5 天的天气预报显示:未来5天每天的最高气温从4°C开始逐日下降至-1°C;每天的最低气温不低于-6°C:最低气温-6°C只出现在其中一天。预报还包含如下信息:(1) 未来5 天中最高气温和最低气温不会出现在同一天,每天的最高气温和最低气温均为整数;(2)若5号的最低气温是未来 5 天中最低的,则2号的最低气温比4 号的高4°C;(3)2号和4号每天的最高气温与最低气温之差均为 5°C.根据以上预报信息,可以得出以下哪项?

某机关甲、乙、丙、丁4人参加本年度综合考评。在德、能、勤、绩、廉 5个方面的单项考评中,他们之中都恰有3人被评为“优秀”,但没有人5个单项均被评为“优秀”。已知:(1)若甲和乙在德方面均被评为“优秀”,则他们在廉方面也均被评为“优秀”;(2)若乙和丙在德方面均被评为“优秀”,则他们在绩方面也均被评为“优秀”;(3)若甲在廉方面被评为“优秀”,则甲和丁在绩方面均被评为“优秀”。若甲在绩方面未被评为“优秀”且丁在能方面未被评为“优秀”,则可以得出以下哪项?

论证有效性分析:分析下述论证中存在的缺陷和漏洞,选择若干要点,写一篇 600 字左右的文章,对该论证的有效性进行分析和评述。(论证有效性分析的一般要点是:概念及主要概念界定和使用的准确性及前后是否互相矛盾,有无各种明显的逻辑错误,论据是否支持结论,论据的成立条件是否充分。还要注意逻辑结构和语言运用。)随着人口老龄化,大家都在谈论老年人还要不要继续工作的话题,我们认为,老年人应该继续工作。我国《宪法》规定:“中华人民共和国公民有劳动的权利和义务。”由此可见,老年人继续工作是法律赋予他们的权利。据统计,我国 2019 年的人均预期寿命已经达到 77.3 岁,这说明老年人的健康水平大大提高了所以老年人完全有能力继续工作。如果老年人不再继续工作而退出劳动力市场,就势必会打破劳动力市场的原有平衡,从而造成社会劳动力的短缺,如果老年人继续工作,就能有效地避免这一问题。此外,老年人有权利享受更高质量的生活。他们想要增加收入、改善生活,就应该继续工作。再说,有规律的生活方式有益于身体健康,而工作实质上是一种有规律的生活方式,所以老年人继续工作还有益于其身体健康。

论说文:根据下述材料写一篇 700 字左右的论说文,题目自拟。人们常说:“领导艺术”。可见领导与艺术之间存在着某种相似点,如领导一个团队完成某项任务就像指挥一个乐队演奏某首乐曲一样。

设有下列四个命题:p1 : 两两相交且不过同一点的三条直线必在同一平面内.p2 : 过空间中任意三点有且仅有一个平面.p3 : 若空间两条直线不相交, 则这两条直线平行.p4 : 若直线 l ⊂ 平面 α, 直线 m ⊥ 平面 α, 则 m ⊥ l.则下列命题中所有真命题的序号是__________.① p1 ∧ p4 ② p1 ∧ p2 ③ ¬p2 ∨ p3 ④ ¬p3 ∨ ¬p4

甲:张某爱出风头,我不喜欢他。乙:你不喜欢他没关系,他工作一直很努力,成绩很突出。以下哪项与上述反驳方式最为相似?

某机关甲、乙、丙、丁4人参加本年度综合考评。在德、能、勤、绩、廉 5个方面的单项考评中,他们之中都恰有3人被评为“优秀”,但没有人5个单项均被评为“优秀”。已知:(1)若甲和乙在德方面均被评为“优秀”,则他们在廉方面也均被评为“优秀”;(2)若乙和丙在德方面均被评为“优秀”,则他们在绩方面也均被评为“优秀”;(3)若甲在廉方面被评为“优秀”,则甲和丁在绩方面均被评为“优秀”。根据上述信息,可以得出以下哪项?

已知函数 f(x) = sinx + 1/sinx, 则【 】① f(x) 的图像关于 y 轴对称;② f(x) 的图像关于原点对称;③ f(x) 的图像关于直线 x = π/2对称; ④ f(x) 的最小值为 2.其中所有真命题的序号是______.

设集合 S, T , S ⊆ N∗, T ⊆ N∗, S, T 中至少有两个元素, 且 S, T 满足:① 对于任意 x, y ∈ S, 若 x≠ y, 都有 xy ∈ T ;② 对于任意 x, y ∈ T , 若 x < y, 则 y/x∈ S. 下列命题正确的是【 】

设a,b是两条异面直线,那么下列四个命题中的假命题是【 】

如图, 在长方体 ABCD − A1B1C1D1 中, 点 E, F 分别在棱 DD1, BB1 上, 且 2DE = ED1, BF = 2FB1.(1) 证明: 当 AB = BC 时, EF ⊥ AC;(2) 证明: 点 C1 在平面 AEF 内.

如图, 在长方体 ABCD − A1B1C1D1 中, 点 E, F 分别在棱 DD1, BB1 上, 且 2DE = ED1, BF = 2FB1.(1) 证明: 点 C1 在平面 AEF 内;(2) 若 AB = 2, AD = 1, AA1 = 3, 求二面角 A − EF − A1 的正弦值.

如图, 在正方体 ABCD − A1B1C1D1 中, E 为 BB1 的中点.(I) 求证: BC1 // 平面 AD1E;(II) 求直线 AA1 与平面 AD1E 所成角的正弦值.

如图, 在三棱柱 ABC − A1B1C1 中, CC1⊥平面 ABC, AC ⊥ BC, AC = BC = 2, CC1 = 3, 点 D, E 分别在棱 AA1 和棱 CC1 上, 且 AD = 1, CE = 2, M 为棱 A1B1 的中点.(I) 求证: C1M ⊥ B1D;(II) 求二面角 B − B1E − D 的正弦值;(III) 求直线 AB 与平面 DB1E 所成角的正弦值.

如图,三棱锥A-BCD中,DA=DB=DC,BD⊥CD,∠ADB=∠ADC=60°,E为BC的中点. (1)证明:BC⊥AD;(2)点F满足(EF)→=(DA)→,求二面角D-AB-F的正弦值.

在三棱柱 ABC − A1B1C1 中, AB ⊥ AC, B1C ⊥ 平面 ABC, E, F 分别是 AC, B1C 的中点.(1) 求证: EF // 平面 AB1C1;(2) 求证: 平面 AB1C ⊥ 平面 ABB1.

直升飞机上一点 P 在地平面 M 上的正射影是 A .从P看地平面上一物体 B (不同于 A ) ,直线P B 垂直于飞机窗玻璃所在的平面 N(如图).证明:平面 N 必与平面 M 相交,且交线 l 垂直于 AB.

如图,在三棱锥S-ABC中,S在底面上的射影N位于底面的高CD上;M是侧棱SC上的一点,使截面MAB与底面所成的角等于∠NSC,求证:SC垂直于截面MAB.

如图,设平面AC和BD相交于BC,它们所成的一个二面角为45°,P为面AC内的一点,Q为面BD内的一点.已知直线MQ是直线PQ在平面BD内的射影,并且M在BC上,又设PQ与平面BD所成的角为β,∠CMQ=θ(0°<θ<90°),线段PM的长为a.求线段PQ的长.

如图,已知二面角α-AB-β的平面角是锐角,C是平面α内的一点(它不在棱AB上),点D是点C在平面β上的射影,点E是棱AB上满足∠CEB为锐角的任意一点,那么【 】.