单项选择(2020年天津市

设 a ∈ R, 则“a > 1”是“a2 > a”的【 】

A、充分不必要条件

B、必要不充分条件

C、充要条件

D、既不充分也不必要条件

答案解析

A

讨论

设全集 U = {−3, −2, −1, 0, 1, 2, 3}, 集合 A = {−1, 0, 1, 2}, B = {−3, 0, 2, 3}, 则 A ∩ (CUB) =【 】

已知 {an} 是无穷数列. 给出两个性质:① 对于 {an} 中任意两项 ai, aj (i > j), 在 {an} 中都存在一项 am, 使得 =am;② 对于 {an} 中任意一项 an (n ⩾ 3), 在 {an} 中都存在两项 ak, al (k > l), 使得 an = .(I) 若 an = n (n = 1, 2, …), 判断数列 {an} 是否满足性质 ①, 说明理由;(II) 若 an = 2n−1 (n = 1, 2, · · · ), 判断数列 {an} 是否同时满足性质 ① 和性质 ②, 说明理由;(III) 若 {an} 是递增数列, 且同时满足性质 ① 和性质 ②, 证明: {an} 为等比数列.

已知椭圆 C : x2/a2 +y2/b2 =1过点 A(−2, −1), 且 a = 2b.(I) 求椭圆 C 的方程;(II) 过点 B(−4, 0) 的直线 l 交椭圆 C 于点 M, N, 直线 MA, NA 分别交直线 x = −4 于点 P, Q. 求 |PB|/|BQ|的值.

已知函数 f(x) = 12 − x2.(I) 求曲线 y = f(x) 的斜率等于 −2 的切线方程;(II) 设曲线 y = f(x) 在点 (t, f(t)) 处的切线与坐标轴围成的三角形的面积为 S(t), 求 S(t) 的最小值.

某校为举办甲、乙两项不同活动, 分别设计了相应的活动方案: 方案一、方案二. 为了解该校学生对活动方案是否支持, 对学生进行简单随机抽样, 获得数据如下表:假设所有学生对活动方案是否支持相互独立.(I) 分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(II) 从该校全体男生中随机抽取 2 人, 全体女生中随机抽取 1 人, 估计这 3 人中恰有 2 人支持方案一的概率;(III) 将该校学生支持方案二的概率估计值记为 p0. 假设该校一年级有 500 名男生和 300 名女生, 除一年级外其他年级学生支持方案二的概率估计值记为 p1. 试比较 p0 与 p1 的大小. (结论不要求证明)

在 △ABC 中, a + b = 11, 再从条件 ①、条件 ② 这两个条件中选择一个作为已知, 求:(I) a 的值;(II) sin C 和 △ABC 的面积.条件 ①: c = 7, cos A = -1/7;条件 ②: cos A = 1/8, cos B = 9/16.注: 如果选择条件 ① 和条件 ② 分别解答, 按第一个解答计分.

如图, 在正方体 ABCD − A1B1C1D1 中, E 为 BB1 的中点.(I) 求证: BC1 // 平面 AD1E;(II) 求直线 AA1 与平面 AD1E 所成角的正弦值.

为满足人民对美好生活的向往, 环保部门要求相关企业加强污水治理, 排放未达标的企业要限期整改. 设企业的污水排放量 W 与时间 t 的关系为 W = f(t). 用 -(f(b)-f(a))/(b-a)的大小评价在 [a, b] 这段时间内企业污水治理能力的强弱. 已知整改期内, 甲、乙两企业的污水排放量与时间的关系如下图所示.① 在 [t1, t2] 这段时间内, 甲企业的污水治理能力比乙企业强;② 在 t2 时刻, 甲企业的污水治理能力比乙企业强;③ 在 t3 时刻, 甲、乙两企业的污水排放都已达标;④ 甲企业在 [0, t1], [t1, t2], [t2, t3] 这三段时间中, 在 [0, t1] 的污水治理能力最强.其中所有正确结论的序号是__________.

若函数 f(x) = sin(x + φ) + cosx 的最大值为 2, 则常数 φ 的一个取值为__________.

已知正方形 ABCD 的边长为 2, 点 P 满足 =1/2(+) ,则|| =______ ; · =______ .

近年来,一些地方修改了本地见义勇为的相关条例,强调对生命的敬畏和尊重,既肯定了成大义凛然、挺身而出的见义勇为,更鼓励和倡导科学、合法、正当的“见义智为”,有专家由此指出,从鼓励见义勇为到倡导“见义智为”,反映了社会价值观念的进步。以下各项如果为真,则除了哪项均能支持上述专家观点?

近期一项调查数据显示,中国不缺少外科医生,而是缺少能做手术的外科医生;中国人均拥有的外科医生数量同其他中高收入国家相当,但中国人均拥有的外科医生所做的手术量却比那些国家少40%。以下哪项如果为真,最能解释上述现象?

某单位购买了《尚书》《周易》《诗经》《论语》《老子》《孟子》各1本,分发给甲、乙、丙、丁、戊5 个部门,每个部门至少1本。已知:(1)若 《周易》《老子》《孟子》至少有1本分发给甲或乙部门,则《尚书》分发给丁部门且《论语》分发给戊部门。(2)若《诗经》《论语》至少有 1本分发给甲或乙部门,则《周易》分发给丙部门且《老子》分发给戊部门。若《尚书》分发给丙部门,则可以得出以下哪项?

某单位购买了《尚书》《周易》《诗经》《论语》《老子》《孟子》各1本,分发给甲、乙、丙、丁、戊5 个部门,每个部门至少1本。已知:(1)若 《周易》《老子》《孟子》至少有1本分发给甲或乙部门,则《尚书》分发给丁部门且《论语》分发给戊部门。(2)若《诗经》《论语》至少有 1本分发给甲或乙部门,则《周易》分发给丙部门且《老子》分发给戊部门。若《老子》分发给丁部门,则以下哪项是不可能的?

“嫦娥”登月、“神舟”巡天,我国不断谱写飞天梦想的新篇章。基于太空失重环境的多重效应,研究人员正在探究植物在微重力环境下生存的可能性。他们设想,如果能够在太空中种植新鲜水果和蔬菜,则不仅有利于航天员的身体健康,而且还可以降低食物的上天成本,同时,可以利用其消耗的二氧化碳产生氧气,为航天员生活与工作提供有氧环境。以下哪项如果为真,则可能成为研究人员实现上述设想的最大难题?

嫦娥”登月、“神舟”巡天,我国不断谱写飞天梦想的新篇章。基于太空失重环境的多重效应,研究人员正在探究植物在微重力环境下生存的可能性。他们设想,如果能够在太空中种植新鲜水果和蔬菜,则不仅有利于航天员的身体健康,而且还可以降低食物的上天成本,同时,可以利用其消耗的二氧化碳产生氧气,为航天员生活与工作提供有氧环境。以下哪项如果为真,则可能成为研究人员实现上述设想的最大难题?

十多年前曾有传闻:M 国从不生产一次性筷子,完全依赖进口,而且M国 96%的一次性筷子来自中国。2019 年有媒体报道:“去年M国出口的木材中,约有40%流向了中国市场,而且今年中国订单的比例还在进一步攀升,中国已成为M国木材出口中占比最大的国家。”张先生据此认为,中国和M国木材进出口角色的转换,表明中国人的环保意识已经超越M国以下哪项如果为真,最能削弱张先生的观点?

某公司为了让员工多运动,近日出台一项规定:每月按照18 万步的标准对员工进行考核,如果没有完成步行任务,则按照“一步一分钱”标准扣钱。有专家认为,此举鼓励运动,看似对员工施加压力,实质上能够促进员工的身心健康,引导整个企业积极向上。以下各项如果为真,则除哪项外均能质疑上述专家的观点?

通过第三方招聘进入甲公司从事销售工作的职员均具有会计学专业背景。孔某的高中同学均没有会计学专业背景,甲公司销售部经理孟某是孔某的高中同学,而孔某是通过第三方招聘进入甲公司的。根据以上信息,可以得出以下哪项?

入冬以来,天气渐渐寒冷。11 月 30 日,某地气象台对未来 5 天的天气预报显示:未来5天每天的最高气温从4°C开始逐日下降至-1°C;每天的最低气温不低于-6°C:最低气温-6°C只出现在其中一天。预报还包含如下信息:(1) 未来5 天中最高气温和最低气温不会出现在同一天,每天的最高气温和最低气温均为整数;(2)若5号的最低气温是未来 5 天中最低的,则2号的最低气温比4 号的高4°C;(3)2号和4号每天的最高气温与最低气温之差均为 5°C.根据以上预报信息,可以得出以下哪项?