设 a ∈ R, 则“a > 1”是“a2 > a”的【 】
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
设全集 U = {−3, −2, −1, 0, 1, 2, 3}, 集合 A = {−1, 0, 1, 2}, B = {−3, 0, 2, 3}, 则 A ∩ (CUB) =【 】
如图, 在正方体 ABCD − A1B1C1D1 中, E 为 BB1 的中点.(I) 求证: BC1 // 平面 AD1E;(II) 求直线 AA1 与平面 AD1E 所成角的正弦值.
若函数 f(x) = sin(x + φ) + cosx 的最大值为 2, 则常数 φ 的一个取值为__________.
已知正方形 ABCD 的边长为 2, 点 P 满足 =1/2(+) ,则|| =______ ; · =______ .
设 a, b 为单位向量, 且 |a + b| = 1, 则 |a − b| =__________.
已知 α, β ∈ R, 则“存在 k ∈ Z 使得 α = kπ + (−1)kβ”是“sin α = sin β”的【 】
a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的【 】
等比数列{an}的公比为q,前n项和为Sn,设甲:q>0,乙:{Sn}是递增数列,则【 】
设函数f(x)的定义域为[0,1].则“函数f(x)在[0,1]上单调递增”是“函数f(x)在[0,1]上的最大值为f(1)”的【 】
设f(x)=x3+log2(x+),对任意实数a,b,a+b≥0是f(a)+f(b)≥0的【 】.