单项选择(2020年天津市

设全集 U = {−3, −2, −1, 0, 1, 2, 3}, 集合 A = {−1, 0, 1, 2}, B = {−3, 0, 2, 3}, 则 A ∩ (CUB) =【 】

A、{−3, 3}

B、{0, 2}

C、{−1, 1}

D、{−3, −2, −1, 1, 3}

答案解析

C

讨论

已知全集U={1,2,3,4,5},集合 M ={1,2},N={3,4},则Cu(M∪N)=【 】

设全集U={-2,-1,0,1,2,3},集合A={-1,2},B={x∣x2-4x+3=0},则∁U(A∪B)=【 】

如果I={a,b,c,d,e},M={a,c,d},N={b,d,e},其中I是全集,那么M ̅∩N ̅等于【 】

设全集I={(x,y)|x,y∈R},集合M={(x,y)│(y-3)/(x-2)=1},N={(x,y)|y≠x+1},那么等于【 】

设全集为R,f(x)=sinx,g(x)=cosx,M={x│f(x)≠0},N={x|g(x)≠0},那么集合{x|f(x)g(x)=0}等于【 】

从某网络平台推荐的影视作品中抽取400部,统计其平分数据,将所得400个评分数据分为8组:[60,70],[70,74],…,[94,98],并整理得到如下的频率分布直方图,则评分在区间[82.86)内的影视作品数量为【 】

为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,下图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为【 】

设i是虚数单位,复数(9+2i)/(2+i)=__________.

已知{an}是公差为2的等差数列,其前8项的和为64,{bn}是公比大于0的等比数列,b1=4,b3-b2=48.(1)求{an}和{bn}的通项公式;(2)记cn=b2n+1/bn ,n∈N*(i)证明{cn2-c2n}是等比数列;(ii)证明<2√2.

设f(x)=ex-asinx,g(x)=b√x.(1)求函数y=f(x)在(0,f(0))处的切线方程;(2)若y=f(x)与y=g(x)有公共点,ⅰ)当a=0时,求b的取值范围;ⅱ)求证:a2+b2>e.

设集合A={0,-a},B={1,a-2,2a-2},若A⊆B,则a=【 】

323 与 221 之最大公约数为______.

S是集合{1,2,…,2023}的子集,满足任意两个元素的平方和不是9的倍数,则|S|的最大值是______(这里|S|表示S的元素个数).

某校举办数学文化节,据统计当天共有980多(不少于980,小于990)名同学进校参观,每位同学进校参观一段时间后离开(之后不会再进来).若无论这些同学以怎样的时间安排参观,我们都能找到k位同学,使得要么这k位同学在某个时间都在校园内参观,要么任何时间他们中都没有两个人同时在校园内参观.求k的最大值.

若集合A={1,2,m},其中m为实数.令B={a²|a∈A},C=A∪B.若C的所有元素之和为6,则C的所有元素之积为________.

求具有下述性质的最小正数c:对任意整数n≥4以及集合A⊆{1,2,⋯,n},若|A|>cn,则存在函数f:A→{1,-1},满足|∑a∈Af(a)∙a|≤1

Given a positive integer n, a set S is n-admissible if①each element of S is an unordered triple of integers in {1,2,⋯,n},②|S|=n-2,and③for each 1≤k≤n-2 and each choice of k distinct A1,A2,⋯,Ak∈S,|A1∪A2∪⋯∪Ak |≥k+2Is it true that, for all n>3 and for each n-admissible set S, there exist pairwise distinct points P1,P2,⋯,Pn in the plane such that the angles of the triangle Pi Pj Pk are all less than 61° for any triple {i,j,k} in S?【译】给定正整数n,称集合S是n-可行,如果其满足以下条件:①S的每个元素都是{1,2,⋯,n}的三元子集;②|S|=n-2;③对任意的1≤k≤n-2和任意k个互不相同的A1,A2,⋯,Ak∈S,都有|A1∪A2∪⋯∪Ak |≥k+2判断以下命题是否为真:对所有n>3和所有的n-可行集合S,在平面内总存在n个互不相同的点P1,P2,⋯,Pn,使得对集合S中任意元素{i,j,k},三角形Pi Pj Pk的每个内角都小于61°.

设含有10个元素的集合的全部子集数为S,其中由个元素组成的子集数为T,则T/S的值为________.

对任意一个非零复数z,定义集合Mz={ω|ω=z2n-1,n∈N}.(Ⅰ)设α是方程x+1/x=的一个根,试用列举法表示集合Mα,若在Mα中任取两位数,求其和为零的概率P;(Ⅱ)设复数ω∈Mz,求证Mω⊆Mz.

设整数m≥2.设集合A由有限个整数(不一定为正)构成,且B1,B2,…,Bm是A的子集.假设对任意k=1,2,…,m,Bk中所有元素之和为mk.证明:A包含至少m/2个元素.