填空题(2020年新高考Ⅰ·理

设 a, b 为单位向量, 且 |a + b| = 1, 则 |a − b| =__________.

答案解析

【解析】

由已知可得 |a + b|2 = (a + b) · (a + b) = |a|2 + |b|2 + 2ab = 1 + 1 + 2ab = 1, 故 ab = −, 所以

|a − b|2 = (a − b) · (a − b) = |a|2 + |b|2 − 2ab = 3 ⇒ |a − b| =

讨论

用数学归纳法证明下列恒等式 1³+2³+3³+⋯+n³=[n(n+1)/2]²

用数学归纳法求下列级数1/(1×2)+1/(2×3 )+1/(3×4)+⋯至n项之和.

已知m,l是直线,α,β是平面,给出下列命题:①若l垂直于α内的两条相交直线,则l⊥α;②若l平行于α,则l平行于α内的所有直线;③若m⊂α,l⊂β,且l⊥m,则α⊥β;④若l⊂β,且l⊥α,则α⊥β;⑤若m⊂α,l⊂β,且a//β,则m//l.其中正确的命题是序号是 ________(注:把你认为正确的命题的序号都填上)

已知两个圆:x2+y2=1①与x2+(y-3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为________________________________.

a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的【 】

已知a,b为两条不同的直线,α,β为两个不同的平面且a⊥α,b⊥β,则下列命题的假命题是【 】

用计算器验算函数y= (x>1)的若干个值,可以猜想下列命题中的真命题只能是【 】

设f(x),g(x)都是单调函数,有如下四个命题:①若f(x)单调递增, g(x)单调递增,则f(x)-g(x)单调递增;②若f(x)单调递增, g(x)单调递减,则f(x)-g(x)单调递增;③若f(x)单调递减, g(x)单调递增,则f(x)-g(x)单调递减;④若f(x)单调递减, g(x)单调递减,则f(x)-g(x)单调递减;其中,正确的命题是【 】

等比数列{an}的公比为q,前n项和为Sn,设甲:q>0,乙:{Sn}是递增数列,则【 】

已知命题p:∃x∈R,sinx<1,命题q:∀x∈R,e|x| ≥1,则下列命题中为真命题的是【 】