问答题(2020年北京大学

若f(x)=x5+px+q有有理根,且正整数p,q不大于100,则满足条件的(p,q)共有几组.

答案解析

设有理根x=m/n ,(m,n)=1,不妨设n<0.则m5+pmn4+qn5=0,于是n| m5+pmn4+qn5 ⇒ n|m5 ⇒ n= -1,于是m5+pm-q=0.q=m5+pm >0,则 m>0,由于m5≤q = ...

查看完整答案

讨论

正实数x,y,z,w满足x≥y≥w,且x+y≤2(w+z),求 + 的最小值.

已知函数 f(x) = |3x + 1| − 2|x − 1|.(1) 画出 y = f(x) 的图像;(2) 求不等式 f(x) > f(x + 1) 的解集.

在直角坐标系 xOy 中, 曲线 C1 的参数方程为 (t 为参数). 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 曲线 C2 的极坐标方程为 4ρcosθ−16ρsinθ + 3 = 0.(1) 当 k = 1 时, C1 是什么曲线?(2) 当 k = 4 时, 求 C1 与 C2 的公共点的直角坐标.

已知函数 f(x) = ex + ax2 − x.(1) 当 a = 1 时, 讨论 f(x) 的单调性;(2) 当 x ⩾ 0 时, f(x) ⩾ x3 + 1, 求 a 的取值范围.

已知 A, B 分别为椭圆 E : +y2 = 1(a > 1) 的左、右顶点, G 为 E 的上顶点, = 8, P 为直线 x = 6上的动点, PA 与 E 的另一交点为 C, PB 与 E 的另一交点为 D.(1) 求 E 的方程;(2) 证明: 直线 CD 过定点.

甲、乙、丙三位同学进行羽毛球比赛, 约定赛制如下:累计负两场者被淘汰; 比赛前抽签决定首先比赛的两人, 另一人轮空; 每场比赛的胜者与轮空者进行下一场比赛, 负者下一场轮空, 直至有一人被淘汰; 当一人被淘汰后, 剩余的两人继续比赛, 直至其中一人被淘汰, 另一人最终获胜, 比赛结束.经抽签, 甲、乙首先比赛, 丙轮空. 设每场比赛双方获胜的概率都为 1/2.(1) 求甲连胜四场的概率;(2) 求需要进行第五场比赛的概率;(3) 求丙最终获胜的概率.

如图, D 为圆锥的顶点, O 是圆锥底面的圆心, AE 为底面直径, AE = AD. △ABC 是底面的内接正三角形,P 为 DO 上一点, PO = DO.(1) 证明: PA ⊥ 平面 PBC;(2) 求二面角 B − PC − E 的余弦值.

设 {an} 是公比不为 1 的等比数列, a1 为 a2, a3 的等差中项.(1) 求 {an} 的公比;(2) 若 a1 = 1, 求数列 {nan} 的前 n 项和.

如图, 在三棱锥 P − ABC 的平面展开图中, AC = 1, AB = AD = , AB ⊥ AC, AB ⊥ AD,cos ∠CAE = 30◦, 则 cos ∠FCB = __________.

已知 F 为双曲线 C : =1 (a > 0, b > 0) 的右焦点, A 为 C 的右顶点, B 为 C 上的点, 且 BF垂直于 x 轴. 若 AB 的斜率为 3, 则 C 的离心率为 __________.