关注优题吧,注册平台账号.
正实数x,y,z,w满足x≥y≥w,且x+y≤2(w+z),求 + 的最小值.
+ ≥ + = + + - ≥ + – w•
≥ + – y• = + – = - + + ≥ -
等号在x=y,y=w,z=(x+y-2w)时成立.
已知函数 f(x) = |3x + 1| − 2|x − 1|.(1) 画出 y = f(x) 的图像;(2) 求不等式 f(x) > f(x + 1) 的解集.
在直角坐标系 xOy 中, 曲线 C1 的参数方程为 (t 为参数). 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 曲线 C2 的极坐标方程为 4ρcosθ−16ρsinθ + 3 = 0.(1) 当 k = 1 时, C1 是什么曲线?(2) 当 k = 4 时, 求 C1 与 C2 的公共点的直角坐标.
已知函数 f(x) = ex + ax2 − x.(1) 当 a = 1 时, 讨论 f(x) 的单调性;(2) 当 x ⩾ 0 时, f(x) ⩾ x3 + 1, 求 a 的取值范围.
已知 A, B 分别为椭圆 E : +y2 = 1(a > 1) 的左、右顶点, G 为 E 的上顶点, = 8, P 为直线 x = 6上的动点, PA 与 E 的另一交点为 C, PB 与 E 的另一交点为 D.(1) 求 E 的方程;(2) 证明: 直线 CD 过定点.
甲、乙、丙三位同学进行羽毛球比赛, 约定赛制如下:累计负两场者被淘汰; 比赛前抽签决定首先比赛的两人, 另一人轮空; 每场比赛的胜者与轮空者进行下一场比赛, 负者下一场轮空, 直至有一人被淘汰; 当一人被淘汰后, 剩余的两人继续比赛, 直至其中一人被淘汰, 另一人最终获胜, 比赛结束.经抽签, 甲、乙首先比赛, 丙轮空. 设每场比赛双方获胜的概率都为 1/2.(1) 求甲连胜四场的概率;(2) 求需要进行第五场比赛的概率;(3) 求丙最终获胜的概率.
如图, D 为圆锥的顶点, O 是圆锥底面的圆心, AE 为底面直径, AE = AD. △ABC 是底面的内接正三角形,P 为 DO 上一点, PO = DO.(1) 证明: PA ⊥ 平面 PBC;(2) 求二面角 B − PC − E 的余弦值.
设 {an} 是公比不为 1 的等比数列, a1 为 a2, a3 的等差中项.(1) 求 {an} 的公比;(2) 若 a1 = 1, 求数列 {nan} 的前 n 项和.
如图, 在三棱锥 P − ABC 的平面展开图中, AC = 1, AB = AD = , AB ⊥ AC, AB ⊥ AD,cos ∠CAE = 30◦, 则 cos ∠FCB = __________.
已知 F 为双曲线 C : =1 (a > 0, b > 0) 的右焦点, A 为 C 的右顶点, B 为 C 上的点, 且 BF垂直于 x 轴. 若 AB 的斜率为 3, 则 C 的离心率为 __________.
设 a, b 为单位向量, 且 |a + b| = 1, 则 |a − b| =__________.
对任意x,y,x2+y2-xy=1,则【 】
已知i,m,n是正整数,且1<i≤m<n.(Ⅰ)证明 niAim<miAin;(Ⅱ)证明 (1+m)n>(1+n)m.
解关于x的不等式(x-a)/(x-a2 )<0(a∈R).
不等式(x-1)/(x-3)>0的解集为【 】
已知α,β,γ是互不相同的锐角,则在sinαcosβ,sinβcosγ,sinγcosα三个值中,大于1/2的个数的最大值是【 】
若实数a,b满足a>b>0,下列不等式中恒成立的是【 】
解不等式>x+a,(a>0)并就图说明之.
已知实数a1,a2,⋯,an>0,求证:ai-1/ai ≥(ai-1+ai+1)/(ai+ai+1+1)其中a0=an,an+1=an.
解不等式2 + (5-x) + log2(1/x) > 0.
不等式>3-2x的解集是__________.
已知a,b,c均为正数,且a2+b2+4c2=3,证明:(1)a+b+2c≤3;(2)若b=2c,则1/a+1/c≥3.
已知a,b,c为正数,且a3/2+b3/2+c3/2=1.证明:(1)abc≤1/9;(2) a/(b+c)+b/(a+c)+c/(a+b)≤1/(2).
设a²+b²+c²=1,x²+y²+z²=1,证ax+by+cz≤1.
不等式组的解集是【 】
设函数f(x)= - ax,其中a>0.(I)解不等式f(x)≤1;(II)求a的取值范围,使函数f(x)在区间[0,+∞)上是单调函数.
若x,y满足约束条件,则z=3x+y的最小值为【 】
对任意实数x1,…,xn,证明下述不等式成立:≤.
已知实数x,y满足,则z=x-y的最大值为__________.
若实数x,y满足,则z=x-1/2 y的最小值是【 】
若x,y满足约束条件,则z=2x-y的最大值是【 】