已知x,y,z>0,判断s=x/(x+y) + y/(y+z) + z/(z+x) 是否存在最大值与最小值.
已椭圆 +y2 =1,圆x2 + y2=4,从圆上一点作椭圆的切点弦,求切点弦所围成的面积.
若f(x)=x5+px+q有有理根,且正整数p,q不大于100,则满足条件的(p,q)共有几组.
正实数x,y,z,w满足x≥y≥w,且x+y≤2(w+z),求 + 的最小值.
已知函数 f(x) = |3x + 1| − 2|x − 1|.(1) 画出 y = f(x) 的图像;(2) 求不等式 f(x) > f(x + 1) 的解集.
已知函数 f(x) = ex + ax2 − x.(1) 当 a = 1 时, 讨论 f(x) 的单调性;(2) 当 x ⩾ 0 时, f(x) ⩾ x3 + 1, 求 a 的取值范围.
已知a,b,c为正数,且a3/2+b3/2+c3/2=1.证明:(1)abc≤1/9;(2) a/(b+c)+b/(a+c)+c/(a+b)≤1/(2).
设a²+b²+c²=1,x²+y²+z²=1,证ax+by+cz≤1.
设函数f(x)= - ax,其中a>0.(I)解不等式f(x)≤1;(II)求a的取值范围,使函数f(x)在区间[0,+∞)上是单调函数.
已知i,m,n是正整数,且1<i≤m<n.(Ⅰ)证明 niAim<miAin;(Ⅱ)证明 (1+m)n>(1+n)m.
已知实数x,y满足,则z=x-y的最大值为__________.
已知α,β,γ是互不相同的锐角,则在sinαcosβ,sinβcosγ,sinγcosα三个值中,大于1/2的个数的最大值是【 】