设集合M={(x,y)│(x-a)²+(y-b)²≤4},N={(x,y)|x>0,y>0},则M∩N≠∅【 】
(1) a<-2 (2) b>2
A、条件(1)充分,但条件(2)不充分
B、条件(2)充分,但条件(1)不充分
C、条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D、条件(1)充分,条件(2)也充分
E、条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
设集合M={(x,y)│(x-a)²+(y-b)²≤4},N={(x,y)|x>0,y>0},则M∩N≠∅【 】
(1) a<-2 (2) b>2
A、条件(1)充分,但条件(2)不充分
B、条件(2)充分,但条件(1)不充分
C、条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D、条件(1)充分,条件(2)也充分
E、条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
E
集合M={2,4,6,8,10},N={x|-1<x<6},则M∩N=【 】
设全集U={ -2, -1,0,1, 2} ,集合 A = {0,1, 2}, B = {-1,1},则A∩(CUB)=【 】
设集合 A ={x | x2 −4 ⩽ 0},B ={x | 2x + a ⩽ 0}, 且 A∩B ={x |−2 ⩽ x ⩽ 1}, 则 a =【】
已知集合 A = {x | x2 −3x−4 < 0},B = {−4,1,3,5}, 则 A∩B=【 】
已知集合E={θ|cosθ<sinθ,0≤θ≤2π},F={θ|tanθ<sinθ},那么E∩F的区间为【 】
已知h>0.设命题甲为:两个实数a,b满足|a-b|<2h;命题乙为:两个实数a,b满足|a-1|<h且|b-1|<h.那么【 】
函数f(x)和g(x)的定义域均为R,“f(x),g(x)都是奇函数”是“f(x)与g(x)的积是偶函数”的【 】
设甲、乙、丙是三个命题.如果甲是乙的必要条件;丙是乙的充分条件但不是乙的必要条件,那么【 】
两条直线A1 x+B1 y+C1=0,A2 x+B2 y+C2=0垂直的充要条件是【 】
a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的【 】
等比数列{an}的公比为q,前n项和为Sn,设甲:q>0,乙:{Sn}是递增数列,则【 】
设函数f(x)的定义域为[0,1].则“函数f(x)在[0,1]上单调递增”是“函数f(x)在[0,1]上的最大值为f(1)”的【 】