填空题(1981年全国统考

A:点(a,b)在圆x2+y2=R2上;B:a2+b2=R2,则A是B的__________条件.

答案解析

充要

讨论

A:θ=150°;B:sinθ=1/2,则A是B的__________条件.

A:a=3;B:|a|=3,则A是B的__________条件.

A:四边形ABCD为平行四边形.B:四边形ABCD为矩形.则A是B的________条件.

在 A , B , C , D 四位候选人中:1.如果选举正、副班长各一人,共有几种选法?写出所有可能的选举结果.2.如果选举班委三人,共有几种选法?写出所有可能的选举结果.

设 A 表示有理数的集合, B 表示无理数的集合,即设 A ={有理数} , B ={无理数},试写出:1. A∪B ; 2 . A∩B .

设直线(l)的参数方程是 (t是参数)椭圆(E)的参数方程是 (θ是参数)问:a,b应满足什么条件,使得对于任意m值来说,直线(l)与椭圆(E)总有公共点?

抛物线的方程是y2=2x,有一个半径为1的圆,圆心在x上运动.问这个圆运动到什么位置时,圆与抛物线在交点处的切线互相垂直?(注:设P(x0,y0)是抛物线y2=2px上一点,则抛物线在P点处的切线斜率是p/y0 )

已知0<α<π.证明:2sin2α≤cot(α/2);并讨论α为何值时等号成立.

CD为直角三角形ABC中斜边AB上的高,已知△ADC,△CBD,△ABC的面积成等比数列,求∠B(用反三角函数表示).

设三角函数f(x)=sin⁡(kx/5+π/3),其中k≠0.(Ⅰ) 写出f(x)的极大值M 、极小值 m 与最小正周期T; (Ⅱ) 试求最小的正整数k,使得当自变量 x 在任意两个整数间(包括整数本身)变化时,函数f(x)至少有一个值是 M 与一个值是 m .

已知函数 f(x) = sinx + 1/sinx, 则【 】① f(x) 的图像关于 y 轴对称;② f(x) 的图像关于原点对称;③ f(x) 的图像关于直线 x = π/2对称; ④ f(x) 的最小值为 2.其中所有真命题的序号是______.

设集合 S, T , S ⊆ N∗, T ⊆ N∗, S, T 中至少有两个元素, 且 S, T 满足:① 对于任意 x, y ∈ S, 若 x≠ y, 都有 xy ∈ T ;② 对于任意 x, y ∈ T , 若 x < y, 则 y/x∈ S. 下列命题正确的是【 】

α,β是两个不同的平面,m,n是平面α及β之外的两条不同直线.给出四个论断:①m⊥n ②α⊥β ③n⊥β ④m⊥α以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________________________________________.

设有不同的直线a,b和不同的平面α,β,γ.给出下列三个命题:①若a//α,b//α,则a//b;②若a//α,a//β,则α//β;③若α⊥β,β⊥γ,则α//β.其中正确的个数是【 】

a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的【 】

等比数列{an}的公比为q,前n项和为Sn,设甲:q>0,乙:{Sn}是递增数列,则【 】

设整数n≥100.伊凡把n,n+1,…,2n的每个数写在不同的卡片上.然后他将这n+1张卡片打乱顺序并分成两堆.证明:至少有一堆中包含两张卡片,使得这两张卡片上的数之和是一个完全平方数.

设函数f(x)的定义域为[0,1].则“函数f(x)在[0,1]上单调递增”是“函数f(x)在[0,1]上的最大值为f(1)”的【 】

已知f(x)=|lgx|-kx-2,给出下列四个结论:(1)若k=0,则f(x)有两个零点; (2) ∃k<0,使得f(x)有一个零点;(3) ∃k<0,使得f(x)有三个零点; (4) ∃k>0,使得f(x)有一个零点.以上正确结论的序号是________.

已知a∈R,则“a>6”是“a2>36”的【 】