填空题(2021年北京市

已知f(x)=|lgx|-kx-2,给出下列四个结论:

(1)若k=0,则f(x)有两个零点; (2) ∃k<0,使得f(x)有一个零点;

(3) ∃k<0,使得f(x)有三个零点; (4) ∃k>0,使得f(x)有一个零点.

以上正确结论的序号是________.

答案解析

(1)(2)(4)

讨论

已知a,b为两条不同的直线,α,β为两个不同的平面且a⊥α,b⊥β,则下列命题的假命题是【 】

设有下列四个命题:p1 : 两两相交且不过同一点的三条直线必在同一平面内.p2 : 过空间中任意三点有且仅有一个平面.p3 : 若空间两条直线不相交, 则这两条直线平行.p4 : 若直线 l ⊂ 平面 α, 直线 m ⊥ 平面 α, 则 m ⊥ l.则下列命题中所有真命题的序号是__________.① p1 ∧ p4 ② p1 ∧ p2 ③ ¬p2 ∨ p3 ④ ¬p3 ∨ ¬p4

设a,b是两条异面直线,那么下列四个命题中的假命题是【 】

用计算器验算函数y= (x>1)的若干个值,可以猜想下列命题中的真命题只能是【 】

设f(x),g(x)都是单调函数,有如下四个命题:①若f(x)单调递增, g(x)单调递增,则f(x)-g(x)单调递增;②若f(x)单调递增, g(x)单调递减,则f(x)-g(x)单调递增;③若f(x)单调递减, g(x)单调递增,则f(x)-g(x)单调递减;④若f(x)单调递减, g(x)单调递减,则f(x)-g(x)单调递减;其中,正确的命题是【 】

已知命题p:∃x∈R,sinx<1,命题q:∀x∈R,e|x| ≥1,则下列命题中为真命题的是【 】

设整数n≥100.伊凡把n,n+1,…,2n的每个数写在不同的卡片上.然后他将这n+1张卡片打乱顺序并分成两堆.证明:至少有一堆中包含两张卡片,使得这两张卡片上的数之和是一个完全平方数.

已知函数 f(x) = sinx + 1/sinx, 则【 】① f(x) 的图像关于 y 轴对称;② f(x) 的图像关于原点对称;③ f(x) 的图像关于直线 x = π/2对称; ④ f(x) 的最小值为 2.其中所有真命题的序号是______.

设集合 S, T , S ⊆ N∗, T ⊆ N∗, S, T 中至少有两个元素, 且 S, T 满足:① 对于任意 x, y ∈ S, 若 x≠ y, 都有 xy ∈ T ;② 对于任意 x, y ∈ T , 若 x < y, 则 y/x∈ S. 下列命题正确的是【 】

已知直线l⊥平面α,直线m⊂平面β,有下面四个命题:①α//β⇒l⊥m;②α⊥β⇒l//m;③l//m⇒α⊥β;④l⊥m⇒α//β.其中正确的两个命题是【 】