单项选择(2020年浙江省

已知空间中不过同一点的三条直线 l, m, n, 则“l, m, n 在同一个平面”是“l, m, n 两两相交”的【 】

A、充分不必要条件

B、必要不充分条件

C、充分必要条件

D、既不充分也不必要条件

答案解析

B

讨论

某几何体的三视图 (单位: cm) 如图所示, 则该几何体的体积 (单位: cm3) 是【 】

函数 y = x cos x + sin x 在区间 [−π, π] 的图像大致为【 】

若实数 x, y 满足约束条件 , 则 z = x + 2y 的取值范围是【 】

已知 a ∈ R, 若 a − 1 + (a − 2)i (i 为虚数单位) 是实数, 则 a =【 】

已知集合 P = {x | 1 < x < 4}, Q = {x | 2 < x < 3}, 则 P ∩ Q =【 】

已知有限数列 {an} 项数为 m, 若其满足: |a1 − a2| ⩽ |a1 − a3| ⩽ · · · ⩽ |a1 − am|, 则称数列 {an} 满足性质 P .(1) 判断数列 3, 2, 5, 1 和数列 4, 3, 2, 5, 1 是否具有性质 P ;(2) 已知 a1 = 1, 公比为 q 的等比数列, 项数为 10, 具有性质 P , 求 q 的取值范围;(3) 若 an 是 1, 2, 3, · · · , m (m ⩾ 4) 的一个排列, bk = ak+1 (k = 1, 2, 3 · · · , m − 1), 数列 {an}, {bn} 都具有性质 P , 求所有满足条件的 {an}.

双曲线C1: x2/4-y2/b2 =1 与圆 C2 : x2 + y2 = 4 + b2 (b > 0) 交于点 A(xA, yA), 曲线 Γ 满足 x > |xA| 并在曲线 C1、C2 上.(1) 若 xA=, 求 b 的值;(2) b =, 圆 C2 与 x 轴交于点 F1, F2, P 在第一象限, |PF1| = 8, 求 ∠F1PF2;(3) 点 D(0,b2/2+2), 过该点的直线斜率为 -b/2 的直线 l 和 Γ 只有两个交点, 记作 M, N, 用 b 表示 ∙,并求其取值范围.

在研究某市交通情况时, 道路密度是指该路段上一定时间内通过的车辆数除以时间, 车辆密度是该路段一定时间内通过的车辆数除以该路段的长度. 现定义交通流量为 v=q/x(x, q 分别是道路密度和车辆密度, 且 x ∈(0, 80]). 据调查某路段的交通流量有如下规律:,(k > 0).求: (1) 若交通流量 v 大于 95, 求 x 的取值范围;(2) 已知道路密度为 80 时, 交通流量为 50. 问 x 多少的时候 q 最大?

已知 f(x) = sinωx, ω> 0.(1) T = 4π, 求ω及f(x)=1/2时的解集;(2) ω = 1, g(x)=[f(x)]2-f(-x)f(π/2-x), 求 x∈[0,π/4] 时 g(x) 的值域.

已知 ABCD 是边长为 1 的正方形, 绕其中一条轴 AB 旋转成一个圆柱.(1) 求该圆柱的表面积;(2) 将 DC 旋转 90° 至 C1D1, 求线 C1D 与平面 ABCD 的夹角.

设x,y是实数,则有最小值和最大值【 】(1) (x-1)2+(y-1)2=1 (2) y=x+1

设集合M={(x,y)│(x-a)²+(y-b)²≤4},N={(x,y)|x>0,y>0},则M∩N≠∅【 】(1) a<-2 (2) b>2

m,n,p是三个不同的质数,则能确定m,n,p乘积【 】(1) m+n+p=16(2) m+n+p=20

8班植树,共植195棵.则能确定各班植树棵树的最小值【 】(1)各班植树棵树均不相同.(2)各班植树棵树最大值28.

记者:贵校是如何培养创新型人才的?受访者:大学生踊跃创新创业是我校的一个品牌。在相关课程学习中,我们注重激发学生创业的积极性,引导学生想创业;通过实训、体验,让学生能创业;通过学校提供专业化的服务,帮助学生创成业。在高校创业者收益榜中,我们学校名列榜首。以下哪项最可能是上述对话中受访者论述的假设?

某部门抽检了肉制品、白酒、乳制品、干果、蔬菜、水产品、饮料等7类商品共 521 种样品,发现其中合格样品515种,不合格样品6种。已知:(1)蔬菜、白酒中有2种不合格样品;(2)肉制品、白酒、蔬菜、水产品中有 5 种不合格样品;(3)蔬菜、乳制品、千果中有3 种不合格样品。根据上述信息,可以得出以下哪项?

时时刻刻总在追求幸福的人不一定能获得最大的幸福,刘某说自己获得了最大的幸福,所以,刘某从来不曾追求幸福。以下哪项与上述论证方式最为相似?

某中学举行田径运动会,高二(3)班甲、乙、丙、丁、戊、己6 人报名参赛。在跳远、跳高和铅球3项比赛中,他们每人都报名1~2项,其中2人报名跳远,3 人报名跳高,3人报名铅球。另外,还知道:(1)如果甲、乙至少有1人报名铅球,则丙也报名铅球:(2)如果己报名跳高,则乙和已均报名跳远;(3)如果丙、戊至少有1人报名铅球,则已报名跳高。根据以上信息,可以得出以下哪项?

某中学举行田径运动会,高二(3)班甲、乙、丙、丁、戊、己6 人报名参赛。在跳远、跳高和铅球3项比赛中,他们每人都报名1~2项,其中2人报名跳远,3 人报名跳高,3人报名铅球。另外,还知道:(1)如果甲、乙至少有1人报名铅球,则丙也报名铅球:(2)如果己报名跳高,则乙和已均报名跳远;(3)如果丙、戊至少有1人报名铅球,则已报名跳高。如果甲、乙均报名跳高,则可以得出以下哪项?

进入移动互联网时代,扫码点餐、在线排号、网购车票、电子支付等智能化生活方式日益普及,人们的生活越来越便捷。然而,也有很多老年人因为不会使用智能手机等设备,无法进入菜场、超市和公园,也无法上网娱乐与购物,甚至在新冠疫情期间因无法从手机中调出健康码而被拒绝乘坐公共交通。对此,某专家指出,社会正在飞速发展,不可能“慢”下来等老年人;老年人应该加强学习,跟上时代发展。以下哪项如果为真,最能质疑该专家的观点?