单项选择(2023年管理综合

某部门抽检了肉制品、白酒、乳制品、干果、蔬菜、水产品、饮料等7类商品共 521 种样品,发现其中合格样品515种,不合格样品6种。已知:

(1)蔬菜、白酒中有2种不合格样品;

(2)肉制品、白酒、蔬菜、水产品中有 5 种不合格样品;

(3)蔬菜、乳制品、千果中有3 种不合格样品。

根据上述信息,可以得出以下哪项?

A、乳制品中没有不合格样品。

B、肉制品中没有不合格样品。

C、蔬菜中没有不合格样品。

D、白酒中没有不合格样品。

E、水产品中没有不合格样品。

答案解析

D

讨论

记者:贵校是如何培养创新型人才的?受访者:大学生踊跃创新创业是我校的一个品牌。在相关课程学习中,我们注重激发学生创业的积极性,引导学生想创业;通过实训、体验,让学生能创业;通过学校提供专业化的服务,帮助学生创成业。在高校创业者收益榜中,我们学校名列榜首。以下哪项最可能是上述对话中受访者论述的假设?

处理餐厨垃圾的传统方式主要是厌氧发酵和填埋,前者利用垃圾产生的沼气发电,投资成本高;后者不仅浪费土地,还污染环境。近日,某公司尝试利用蟑螂来处理垃圾。该公司饲养了3亿只“美洲大”蟑螂,每天可吃掉 15 吨餐厨垃圾。有专家据此认为,用“蟑螂吃掉垃圾”这一生物处理方式解决餐厨垃圾,既经济又环保。以下哪项如果为真,最能质疑上述专家的观点?

爱因斯坦思想深刻、思维创新。他不仅是一位伟大的科学家,还是一位思想家和人道主义者,同时也是一位充满个性的有趣人物。他一生的经历表明,只有拥有诙谐幽默、充满个性的独立人格,才能做到思想深刻、思维创新。根据以上陈述,可以得出以下哪项?

甲有两张牌a,b,乙有x,y,甲乙各任取一张牌,则甲取出牌不小于乙取出牌的概率不小于1/2.【 】(1)a > x.(2)a+b>x+y·

设数列{an}的前n项和为Sn.则a2,a3,a4,⋯为等比数列.(1) Sn+1>Sn,n=1,2,3,⋯(2) {Sn}是等比数列.

8班植树,共植195棵.则能确定各班植树棵树的最小值【 】(1)各班植树棵树均不相同.(2)各班植树棵树最大值28.

m,n,p是三个不同的质数,则能确定m,n,p乘积【 】(1) m+n+p=16(2) m+n+p=20

甲,乙两车分别从 A,B 两地同时出发相向而行,1 小时后,甲车到达 C 点,乙车到达 D点则能确定 AB 两地的距离【 】(1)已知 C,D 两地距离(2) 已知甲,乙两车速度比

设集合M={(x,y)│(x-a)²+(y-b)²≤4},N={(x,y)|x>0,y>0},则M∩N≠∅【 】(1) a<-2 (2) b>2

设x,y是实数,则有最小值和最大值【 】(1) (x-1)2+(y-1)2=1 (2) y=x+1

已知直线l⊥平面α,直线m⊂平面β,有下面四个命题:①α//β⇒l⊥m;②α⊥β⇒l//m;③l//m⇒α⊥β;④l⊥m⇒α//β.其中正确的两个命题是【 】

已知m,l是直线,α,β是平面,给出下列命题:①若l垂直于α内的两条相交直线,则l⊥α;②若l平行于α,则l平行于α内的所有直线;③若m⊂α,l⊂β,且l⊥m,则α⊥β;④若l⊂β,且l⊥α,则α⊥β;⑤若m⊂α,l⊂β,且a//β,则m//l.其中正确的命题是序号是 ________(注:把你认为正确的命题的序号都填上)

关于函数f(x)=4 sin⁡(2x+π/3),x∈R,有下列命题:①由f(x1)=f(x2)=0可得x1 - x2必是π的整倍数;②y=f(x)的表达式可改写为y=4 cos⁡(2x-π/6);③y=f(x)的图像关于点(-π/6,0)对称;④y=f(x)的图像关于直线x=-π/6对称.其中正确的命题的序号是 ________,(注:把你认为正确的命题的序号都填上)

α,β是两个不同的平面,m,n是平面α及β之外的两条不同直线.给出四个论断:①m⊥n ②α⊥β ③n⊥β ④m⊥α以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________________________________________.

已知sin⁡α>sin⁡β,那么下列命题成立的是【 】

命题A:底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥.命题A的等价命题B可以是:底面为正三角形,且____________________的三棱锥是正三棱锥.

设有不同的直线a,b和不同的平面α,β,γ.给出下列三个命题:①若a//α,b//α,则a//b;②若a//α,a//β,则α//β;③若α⊥β,β⊥γ,则α//β.其中正确的个数是【 】

下列命题中正确的命题是【 】

在空间中,①若四点不共面,则这四点中任何三点都不共线.②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是______(把要求的命题序号都填上)

已知两个圆:x2+y2=1①与x2+(y-3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为________________________________.

设f(x)=x2+a,记f1(x)=f(x),fn(x)=f(fn-1(x)),n=2,3,⋯,M={a∈R│对所有正整数n,|fn(0)|≤2}.证明:M=[-2,1/4].

设{an}是公差不为0的无穷等差数列,则“{an}为递增数列”是“存在正整数N0,当n>N0时,an>0”的【 】

设x∈R,则“sin⁡x=1”是“cos⁡x=0”的【 】

Let k be a positive integer and let S be a finite set of odd prime numbers. Prove that there is at most one way (up to rotation and refection) to place the elements of S around a circle such that the product of any two neighbours is of the form x2+x+k for some positive integer x. 译文:给定正整数 k,S是一个由有限个奇素数构成的集合.证明:至多只有一种方式(旋转或对称后相同视为同种方式)可以将S中的元素排成一个圆周,且满足任意两个相邻元素的乘积均可以写成x2+x+k的形式 (其中x为正整数) .

“x为整数”是“2x+1”为整数的【 】条件.

有体育、美术、音乐、舞蹈4个兴趣班,每名同学至少参加 2个.则至少有 12 名同学参加的兴趣班完全相同【 】(1)参加兴趣班的同学共有 125人.(2)参加2个兴趣班的同学有 70人.

关于x的方程x²-px+q=0有两个实根a,b,则p-q>1【 】(1) a>1. (2) b<1.

已知等比数列{an}的公比大于1,则{an}单调上升【 】(1) a1是方程 x2-x-2=0的根(2) a1是方程x2+x-6=0的根

设 a, b 为单位向量, 且 |a + b| = 1, 则 |a − b| =__________.

已知 α, β ∈ R, 则“存在 k ∈ Z 使得 α = kπ + (−1)kβ”是“sin α = sin β”的【 】