某部门抽检了肉制品、白酒、乳制品、干果、蔬菜、水产品、饮料等7类商品共 521 种样品,发现其中合格样品515种,不合格样品6种。已知:
(1)蔬菜、白酒中有2种不合格样品;
(2)肉制品、白酒、蔬菜、水产品中有 5 种不合格样品;
(3)蔬菜、乳制品、千果中有3 种不合格样品。
根据上述信息,可以得出以下哪项?
A、乳制品中没有不合格样品。
B、肉制品中没有不合格样品。
C、蔬菜中没有不合格样品。
D、白酒中没有不合格样品。
E、水产品中没有不合格样品。
某部门抽检了肉制品、白酒、乳制品、干果、蔬菜、水产品、饮料等7类商品共 521 种样品,发现其中合格样品515种,不合格样品6种。已知:
(1)蔬菜、白酒中有2种不合格样品;
(2)肉制品、白酒、蔬菜、水产品中有 5 种不合格样品;
(3)蔬菜、乳制品、千果中有3 种不合格样品。
根据上述信息,可以得出以下哪项?
A、乳制品中没有不合格样品。
B、肉制品中没有不合格样品。
C、蔬菜中没有不合格样品。
D、白酒中没有不合格样品。
E、水产品中没有不合格样品。
D
甲有两张牌a,b,乙有x,y,甲乙各任取一张牌,则甲取出牌不小于乙取出牌的概率不小于1/2.【 】(1)a > x.(2)a+b>x+y·
设数列{an}的前n项和为Sn.则a2,a3,a4,⋯为等比数列.(1) Sn+1>Sn,n=1,2,3,⋯(2) {Sn}是等比数列.
8班植树,共植195棵.则能确定各班植树棵树的最小值【 】(1)各班植树棵树均不相同.(2)各班植树棵树最大值28.
m,n,p是三个不同的质数,则能确定m,n,p乘积【 】(1) m+n+p=16(2) m+n+p=20
甲,乙两车分别从 A,B 两地同时出发相向而行,1 小时后,甲车到达 C 点,乙车到达 D点则能确定 AB 两地的距离【 】(1)已知 C,D 两地距离(2) 已知甲,乙两车速度比
设集合M={(x,y)│(x-a)²+(y-b)²≤4},N={(x,y)|x>0,y>0},则M∩N≠∅【 】(1) a<-2 (2) b>2
已知直线l⊥平面α,直线m⊂平面β,有下面四个命题:①α//β⇒l⊥m;②α⊥β⇒l//m;③l//m⇒α⊥β;④l⊥m⇒α//β.其中正确的两个命题是【 】
命题A:底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥.命题A的等价命题B可以是:底面为正三角形,且____________________的三棱锥是正三棱锥.
设有不同的直线a,b和不同的平面α,β,γ.给出下列三个命题:①若a//α,b//α,则a//b;②若a//α,a//β,则α//β;③若α⊥β,β⊥γ,则α//β.其中正确的个数是【 】
在空间中,①若四点不共面,则这四点中任何三点都不共线.②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是______(把要求的命题序号都填上)
设f(x)=x2+a,记f1(x)=f(x),fn(x)=f(fn-1(x)),n=2,3,⋯,M={a∈R│对所有正整数n,|fn(0)|≤2}.证明:M=[-2,1/4].
设{an}是公差不为0的无穷等差数列,则“{an}为递增数列”是“存在正整数N0,当n>N0时,an>0”的【 】
有体育、美术、音乐、舞蹈4个兴趣班,每名同学至少参加 2个.则至少有 12 名同学参加的兴趣班完全相同【 】(1)参加兴趣班的同学共有 125人.(2)参加2个兴趣班的同学有 70人.
关于x的方程x²-px+q=0有两个实根a,b,则p-q>1【 】(1) a>1. (2) b<1.
已知等比数列{an}的公比大于1,则{an}单调上升【 】(1) a1是方程 x2-x-2=0的根(2) a1是方程x2+x-6=0的根
设 a, b 为单位向量, 且 |a + b| = 1, 则 |a − b| =__________.
已知 α, β ∈ R, 则“存在 k ∈ Z 使得 α = kπ + (−1)kβ”是“sin α = sin β”的【 】