填空题(2001年全国新课程

在空间中,①若四点不共面,则这四点中任何三点都不共线.②若两条直线没有公共点,则这两条直线是异面直线.

以上两个命题中,逆命题为真命题的是______(把要求的命题序号都填上) 

答案解析

讨论

命题A:底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥.命题A的等价命题B可以是:底面为正三角形,且____________________的三棱锥是正三棱锥.

设有不同的直线a,b和不同的平面α,β,γ.给出下列三个命题:①若a//α,b//α,则a//b;②若a//α,a//β,则α//β;③若α⊥β,β⊥γ,则α//β.其中正确的个数是【 】

下列命题中正确的命题是【 】

近期一项调查数据显示,中国不缺少外科医生,而是缺少能做手术的外科医生;中国人均拥有的外科医生数量同其他中高收入国家相当,但中国人均拥有的外科医生所做的手术量却比那些国家少40%。以下哪项如果为真,最能解释上述现象?

某单位购买了《尚书》《周易》《诗经》《论语》《老子》《孟子》各1本,分发给甲、乙、丙、丁、戊5 个部门,每个部门至少1本。已知:(1)若 《周易》《老子》《孟子》至少有1本分发给甲或乙部门,则《尚书》分发给丁部门且《论语》分发给戊部门。(2)若《诗经》《论语》至少有 1本分发给甲或乙部门,则《周易》分发给丙部门且《老子》分发给戊部门。若《尚书》分发给丙部门,则可以得出以下哪项?

某单位购买了《尚书》《周易》《诗经》《论语》《老子》《孟子》各1本,分发给甲、乙、丙、丁、戊5 个部门,每个部门至少1本。已知:(1)若 《周易》《老子》《孟子》至少有1本分发给甲或乙部门,则《尚书》分发给丁部门且《论语》分发给戊部门。(2)若《诗经》《论语》至少有 1本分发给甲或乙部门,则《周易》分发给丙部门且《老子》分发给戊部门。若《老子》分发给丁部门,则以下哪项是不可能的?

某机关甲、乙、丙、丁4人参加本年度综合考评。在德、能、勤、绩、廉 5个方面的单项考评中,他们之中都恰有3人被评为“优秀”,但没有人5个单项均被评为“优秀”。已知:(1)若甲和乙在德方面均被评为“优秀”,则他们在廉方面也均被评为“优秀”;(2)若乙和丙在德方面均被评为“优秀”,则他们在绩方面也均被评为“优秀”;(3)若甲在廉方面被评为“优秀”,则甲和丁在绩方面均被评为“优秀”。若甲在绩方面未被评为“优秀”且丁在能方面未被评为“优秀”,则可以得出以下哪项?

论证有效性分析:分析下述论证中存在的缺陷和漏洞,选择若干要点,写一篇 600 字左右的文章,对该论证的有效性进行分析和评述。(论证有效性分析的一般要点是:概念及主要概念界定和使用的准确性及前后是否互相矛盾,有无各种明显的逻辑错误,论据是否支持结论,论据的成立条件是否充分。还要注意逻辑结构和语言运用。)随着人口老龄化,大家都在谈论老年人还要不要继续工作的话题,我们认为,老年人应该继续工作。我国《宪法》规定:“中华人民共和国公民有劳动的权利和义务。”由此可见,老年人继续工作是法律赋予他们的权利。据统计,我国 2019 年的人均预期寿命已经达到 77.3 岁,这说明老年人的健康水平大大提高了所以老年人完全有能力继续工作。如果老年人不再继续工作而退出劳动力市场,就势必会打破劳动力市场的原有平衡,从而造成社会劳动力的短缺,如果老年人继续工作,就能有效地避免这一问题。此外,老年人有权利享受更高质量的生活。他们想要增加收入、改善生活,就应该继续工作。再说,有规律的生活方式有益于身体健康,而工作实质上是一种有规律的生活方式,所以老年人继续工作还有益于其身体健康。

论说文:根据下述材料写一篇 700 字左右的论说文,题目自拟。人们常说:“领导艺术”。可见领导与艺术之间存在着某种相似点,如领导一个团队完成某项任务就像指挥一个乐队演奏某首乐曲一样。

设有下列四个命题:p1 : 两两相交且不过同一点的三条直线必在同一平面内.p2 : 过空间中任意三点有且仅有一个平面.p3 : 若空间两条直线不相交, 则这两条直线平行.p4 : 若直线 l ⊂ 平面 α, 直线 m ⊥ 平面 α, 则 m ⊥ l.则下列命题中所有真命题的序号是__________.① p1 ∧ p4 ② p1 ∧ p2 ③ ¬p2 ∨ p3 ④ ¬p3 ∨ ¬p4

向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系的图像如图所示,那么水瓶的形状是【 】

如图,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF//AB,EF=3/2,EF与面AC的距离为2,则该多面体的体积为【 】

如下图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB, 将剩余部分沿OC,OD折叠,使OA,OB重合,则A(B),C,DCO为顶点的四面体的体积是_______.

如图,正三棱锥S-ABC的侧面是边长为a的正三角形,D是SA的中点,E是BC的中点,求△SDE绕直线SE旋转一周所得到的旋转体的体积.

如图,在平行六面体ABCD-A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=π/3. (Ⅰ)求证:顶点A1在底面ABCD的射影O在∠BAD的平分线上;(Ⅱ)求这个平行六面体的体积.

设P是一个凸多面体,满足以下两个性质:(i) P的每一个顶点恰属于 3 个不同的面;(ii) 对任意 k ≥3, P 中 k 边形面都恰有偶数个。有一只蚂蚁从某条棱的中点出发,沿棱爬行,走一条闭合路径 L ,经过 L 上每一点恰好一次,最终回到出发点。 L 将 P 的表面分为两部分,使得对任意的 k ≥3,两部分中 k 边形面的个数相等。求证:蚂蚁在爬行中向左转和向右转的次数相等。

小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,△EAB,△FBC,△GCD,△HDA均为正三角形,且它们所在的平面都与平面ABCD垂直. (1)证明:EF//平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度).

设正多面体每个顶点连有M条棱,每面都是正N边形,则正整数M和N满足关系:M>2,N>2,MN<2(M+N),这种正多面体共有【 】种。

设0<θ<π/2,曲线x2sin⁡θ+y2cos⁡θ=1和x2cos⁡θ-y2sin⁡θ=1有4个不同的交点.(Ⅰ)求θ的取值范围;(Ⅱ)证明这4个交点共圆,并求圆半径的取值范围.

如图,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M,N分别是A1B1,A1A的中点. (I)求的长; (II)求cos⟨,⟩的值;(Ⅲ)求证A1B⊥C1M.